ENCYCLOPEDIA
FOR THE TRS-80"

A library of useful information

for your TRS-80

Business
Education

Games

Graphics

Hardware

Home Applications
Interface

Tutorial

Utility

VOLUME 9

*Trademark of Tandy Corp.

ENCYCLOPEDIA
for the TRS-80*

ENCYCLOPEDIA
for the TRS-80*

VOLUME 9

wayne

I

- b]
™ — -

AN i
PETERBOROUGH NH 03458.

*Trademarks of Radio Shack Division of Tandy Corp.

The 1.DOS disk operating system, a product of Logical Systems, was used in the technical produe-
tion of this book.

FIRST EDITION
FIRST PRINTING JULY 1982
Copyright © 1982 by Wayne Green Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with
respect to the use of the information herein.

Edited by Kate Comiskey and Katherine Lindquist
Proofread by Ann Winsor
Production: Margaret Baker, Gary Ciocci,
Linda Drew, Thomas Viileneuve, Robert M. Viileneuve,
John R. Schweigert, Sandra Dukette, Elizabeth Libby, Karen Stewart
Technical Editor: Jim Heid
Hlustrations by Howard Happ

FOREWORD

The Biggest Difference

There are lots of arguments about which computer is the best. The answer
to this question lies not in which hardware is best. That is really irrelevant,
when you understand the field. The major value of any computer lies in the
software and the information available for it. Hence this encyclopedia.

The TRS-80 is by no means the best computer on the market as far as its
hardware is concerned, but with the support of 80 Microcomputing maga-
zine and this encyclopedia series, you have an almost unlimited source of in-
formation on how to use your computer—and of programs. With this infor-
mation source the TRS-80 is by far the most valuable computer system ever
built. No other computer, at any price, has anything approaching this
amount of user information and programs available.

Most encyclopedias try to freeze everything at one time and are thus able
to divide the material up alphabetically. This is a new kind of encyclopedia
—a living one—with each new volume keeping you up to date on the very
latest information on using your computer and the newest of programs.

Your computer can be a fantastic teaching device, a simulator, a way to
play all sorts of fascinating games, a business aid, a scientific instrument, a
control unit for machinery. . .. It is one of the most flexible gadgets ever in-
vented. All of these applications are possible if you have the information and
the programs. This encyclopedia will give you these.

To get the best use of your TRS-80, don’t miss a single volume of the Ency-
clopedia for the TRS-80.

WAYNE GREEN
Publisher

CONTENTS

Please note: Before typing in any listing in this book, see Appendix A.

FOREWORD
Wayne Green.. v

BUSINESS
Layaway
Miguel Diaz..... 3

Your Fair Share
Nate Salsbury. 12

EDUCATION
Do-It-Yourself Maze Package

Anne Weiss. 21
Getting Your Bearings

Gary V. Small 35

GAMES
Left/Right for the Color Computer

Robert Toscani...... 43
Munch

John Corbani..... 51

GRAPHICS
Dynamic Graphics with Pool Ball

David L. Kahn. 59
Recreating Graphics

Steve Carr. 71
Super Fast Graphics in BASIC

Hardin Brothers........ 79

HARDWARE
EPROM Programmer
Abel]. Tapia. 93

vii

contents

HOME APPLICATIONS
Autocost

Jim Heid. e LI
Celestial Software

Michael J. Mangieri. 136
Your Personal Expense Account

D.JKelly. 149

INTERFACE
Model III 1/0O Port
Harry Avant. 167

TUTORIAL
A Bit of Precision
Allan S. Joffe W3KBM. i 179
Computer Number Systems
And Arithmetic Operations—Part I1

GeneKovalcik. 183
UTILITY
TRSDOS Multiple Command Processor

Philip Sherman.0 i 195
Dandyzap

Richard T. Sornborger. i 205
Slow Scroll

Peter A. Lewis.o 223
APPENDICES

Appendix A. 229

Appendix B. 230
IND X . 257

viii

Encyclopedia
Loader

The editors of Wayne Green Books want to help you maximize your mi-
crocomputing time, so they created the Encyclopedia Loader™,

The Encyclopedia Loader is a special series of cassettes that offer the
longer programs in the Encyclopedia for the TRS-80* in ready-to-load form.
Each of the ten volumes of the Encyclopedia provides the essential docu-
mentation for the programs on the Loader.

With the Encyclopedia Loader, you'll save hours of keyboard time and
eliminate the aggravating search for typos. The Encyclopedia Loader for
Volume 9 will contain the programs for the following articles:

Layaway

Your Fair Share

Do-It-Yourself Maze Package

Munch

Autocost

Your Personal Expense Account
TRSDOS Multiple Command Processor

Dandyzap
Encyclopedia Loader™ for Volume 1 EL8001 $14.95
Encyclopedia Loader™ for Volume 2 EL8002 $14.95
Encyclopedia Loader™ for Volume 3 EL8003 $14.95
Encyclopedia Loader™ for Volume 4 EL8004 $14.95
Encyclopedia Loader™ for Volume 5 EL8005 $14.95
Encyclopedia Loader™ for Volume 6 EL8006 $14.95
Encyclopedia Loader™ for Volume 7 EL8007 $14.95
Encyclopedia Loader™ for Volume 8 EL8008 $14.95
Encyclopedia Loader™ for Volume 9 EL8009 $14.95

(Please add $1.50 per package for postage & handling)

Mail your order to “Encyclopedia Loader Sales,” Wayne Green Books, Pine
Street, Peterborough, NH 03458 or call (1-800-258-5473).

*[RS-80 is a trademark of Radio Shack Division of Tandy Corp.

BUSINESS

Layaway
Your Fair Share

BUSINESS

Layaway
Miguel Diaz

ost department stores offer some sort of layaway plan. Layaway plans

differ from credit plans in that no interest charge is added to the sales
price, and that delivery of the merchandise is not made until the account is
paid in full.

When a layaway transaction occurs, the merchandise is stored away with
a tag attached to it. The tag indicates the buyer’s name and address, the sales
price and the balance due, and any other pertinent information the store
wishes to include. The customer usually must make a down payment on a
layaway plan. The customer then makes periodic installment payments
which the store subtracts from the balance due. Upon the last payment, the
merchandise is delivered, and title is transferred to the customer.

Two aspects of the layaway plan are that custody of the merchandise re-
mains with the vendor until the account is paid in full, and that there is no
predetermined installment amount or payment date. The store does, how-
ever, usually set a date by which the account must be paid in full.

I wrote this program, Layaway, (see Program Listing) for a TRS-80
Model 111 with at least one disk drive unit, a Disk Operating System, and a
parallel printer. As written, the program can handle approximately 300 ac-
counts per disk. To increase this number, label each additional disk from A
to Z and make each label number part of the account code. For example,
F-145 is located on the disk labelled F. With this approach, you can keep an
infinite number of accounts with no need to invest in additional disk drives.
The program also has an automatic purge function that places new records
into slots of inactive records.

Layplan is the only data file the programs requires. Data records on this
file are shown in Table 1.

How the Program Works

Since the program uses only one data file open, use just one buffer when
you enter Disk BASIC. In TRSDOS, enter 1 in answer to the HOW MANY
FILES prompt. When you run the program, it asks for a system date if you
have not entered one via the DOS command DATE. This does not work on
the Models I and I1. Lines 50-70 display the program menu (Figure 1). File
initialization is accomplished in lines 840-900. The report heading routine

3

business

Position Description Field Name Length
1 Account code CODES$ 4
2 Customer name NAMS 30
3 Address line 1 AL$ 30
4 Address line 2 BL$ 30
5 Telephone number TELES$ 8
6 Identification SS$ 11
7 Driver’s license number LIC$ 9
8 Employer name JOBS 30
9 Description DESCS$ 50

10 Debits (charges) DR$ 8
11 Credits (payments/adjustments) CR$ 8
12 Transaction date PO$% 8
13 Expected date of delivery PU$ 8
14 Last payment date LP$ 8

Table 1. Data records

starts in line 920. As written, the program outputs five line feeds to set the
paper to the appropriate heading titles (top of form). If this is unsuitable to
you, modify this line as required or LPRINT either CHR$(12) or CHR$(140)
to generate a page advance on the printer.

Upon the menu display, if you type END in response to the prompt
ENTER YOUR OPTION (END), program control goes to line 910 where
program execution terminates properly.

To create a new account record, select option 1 from the menu (Figure 2).
This directs program control to lines 100-210 which contain the routines in
which you enter the new account data. The program determines which is
the highest available record on the file and assigns its number as the

*** LAY-A-WAY PLAN ***

.CREATE NEW ACCOUNT

.LISTOF ACCOUNTS

ENTER PAYMENTS

.ENTER ADJUSTMENTS

. ACCOUNTSTATUS

.PASTDUE ACCOUNTS
SYSTEM DATE :04/01/82

ENTER YOUR OPTION(END)___

D U OO =

Figure 1. Program menu

business

CREATE NEW LAYAWAY ACCOUNT. ..

NAME (END) : JOHN DOE

ADDRESS LINE #1 : LAS AMERICAS AVENUE
ADDRESS LINE #2 : PONCE, PUERTO RICO 00731
TELEPHONE (NNN-NNNN) : 555-1212

SOCIAL SECURITY NUMBER (SSS-55-SSSS) : 123-45-6789
DRIVER'S LICENSE # : 987-65-4321

PLACE OF WORK : ABC COMPUTER CORPORATION
ITEM DESCRIPTION : ONE 25" COLOR TELEVISION

PICK-UP DATE (MM/DD/YY) : 02/24/82
SALE AMOUNT : 750.50

DOWN PAYMENT : 125.00

CORRECT (Y/N) ...

Figure 2. Option 1, create a new account

customer account code. If the number encountered is greater than the
default value of 300, the program halts, asks you to use a new disk, and then
returns you to the menu. Upon successful completion of the data entry for
each account, the routine in lines 200-340 generates a printed customer data
sheet. (See Figure 3.)

CUSTOMER DATA SHEET

ACCOUNT CODE : 1
NAME : JOHN DOE
ADDRESS : LAS AMERICAS AVENUE
PONCE, PUERTO RICO 00731
TELEPHONE : 555-1212
SOCIAL SECURITY : 123-45-6789
LICENSE : 987-65-4321
PLACE OF WORK : ABC COMPUTER CORPORATION
DESCRIPTION : ONE 25" COLOR TELEVISION
PURCHASE DATE : 12/31/81
PICK-UP DATE : 02/24/82
GROSS AMOUNT : 750.50
PAYMENTS : 125.00
BALANCE DUE : 625.00

Figure 3. Customer data sheet

business

LIST OF ACCOUNTS
HIT (ENTER) WHEN PRINTER IS READY _____

LIST OF ACCOUNTS PAGE :1

SOCIAL
CODE NAME SECURITY DEBITS CREDITS BALANCE
1 JOHN DOE 123-45-6789 750.50 125.00 625.50
2 SMITH, FREDERICK W. 087-65-4321 75.27 10.00 65.27
TOTALS $825.77 $135.00 $690.77

Figure 4. Option 2, listing of all accounts

ENTER PAYMENTS

ENTER CUSTOMER CODE (END) : 1
JOHN DOE

IS THIS CORRECT? (Y/N) Y

CHECK NUMBER (OR CASH) 123
AMOUNT PAID : 10.00

CORRECT? (Y/N) ____

ABOUT TO PRINT CASH RECEIPT SLIP. .
HIT (ENTER) WHEN PRINTER IS READY.

Figure 5. Option 3, entering payments

CASH RECEIPT SLIP
DATE : 12/31/81
RECEIVED FROM : JOHN DOE
LAS AMERICAS AVENUE
PONCE, PUERTO RICO 00731 123-45-6789
THE AMOUNT OF 10.00 TO BE CREDITED TO ACCOUNT NUMBER 1
REFERENCE : 123
RECEIVED BY

THANK YOU.

Figure 6. Output from option 3

business

To obtain a complete listing of all customer accounts on a disk, select op-
tion 2 from the menu (Figure 4). Lines 220-280 print this report which
shows the account code, customer name, identification code, sale price,
payments made to date, and current balance due.

Select option 3 to enter payments (Figure 5). The routine to accept pay-
ment data is contained in lines 350-490. A cash receipt slip (Figure 6) is pro-
duced upon successful completion of each payment data entry session.

Selecting option 4 allows you to enter adjustments. This routine is con-
tained in lines 500-590. If you want to enter a credit amount as an adjust-
ment, your input must be negative.

An account status query is handled by option 5 (Figure 7). Lines 600-680
contain this routine. A full account status is displayed for requested ac-

CUSTOMER ACCOUNT STATUS

NAME : JOHN DOE
ADDRESSS : LAS AMERICAS AVENUE

PONCE, PUERTO RICO 00731
TELEPHONE : 555-1212 SOCIAL SECURITY : 123-45-6789
LICENSE : 987-65-43 EMPLOYER : ABC COMPUTER CORPORATION
DESCRIPTION : ONE 25" COLOR TELEVISION

PURCHASE DATE : 12/31/81 PICK-UP DATE : 02/24/82
GROSS AMOUNT : 750.50

PAYMENTS : 135.00

BALANCE DUE : 615.50

DO YOU WISH A HARDCOPY PRINTOUT? (Y/N) ___

Figure 7. Option 5, account status query

PAST DUE ACCOUNTS PAGE :1
AS OF : 04/01/82

CODE
NAME PICK-UP LAST PAID DEBITS CREDITS BALANCE
1
JOHN DOE 02/24/82 12/31/81 750.50 135.00 615.50
2
SMITH, FREDERICK W. 03/01/82 12/31/81 75.27 10.00 65.27
TOTALS 825.77 145.00 680.77

Figure 8. Option 6, list of overdue accounts

business

counts. The routine to send output to the printer is contained in lines
690-740.

The last option available from the menu produces a report of overdue ac-
counts (Figure 8). Use this if you enter an estimated delivery date for the
merchandise. Accounts which reflect a delivery date later than the actual
system date are not shown. This report contains the account code, customer
name, expected pickup date, date the last payment was received, debits,
credits, and the balance due.

business

Program Listing. Layaway

10 REM “LAYAWAY- MIGUEL DIAZ
P.0. BOX 8475
PONCE, P.R. 00732 vessses 10/81
20 REM " > PROGRAM INITIALIZATION <<<<<<<<CLLLLLLLLLCLLLLLLL
30 CLEARSOO?:DE?INTA—Z:DEFDBLS,P,C,D,T:M$="######.##_":M1$="$#####.##-
":DIMK(300
40 D$=LEFT$(TIMES,8): IFD$<>"00/00/00" THENSOELSECLS :LINEINPUT"ENTER SYS
TEM DATE (MM/DD/YY) : *;D$:IFLEN(D$)<>BTHENAC
50 CLS:PRINTCHR$(23)"*** | AY~A-WAY PLAN ***":PRINT:PRINT"1. CREATE NEW
ACCOUNT" : PRINT"2. LIST OF ACCOUNTS":PRINT"3. ENTER PAYMENTS":PRI
NT"4. ENTER ADJUSTMENTS"
60 PRINT"5. ACCOUNT STATUS":PRINT"6. UNDELIVERED ACCOUNTS":PRINT
70 PRINT" SYSTEM DATE : “;D$:PRINT:LINEINPUT"ENTER YOUR OPTION (END)
;0%: IF0$="END"THENS10
80 P0=0:10=0:0=VAL(0$): IFO<I0R0>6 THENSOEL SEIFX9=0G0SUB860
90 ONOGOTO110,230,360,510,610,760
100 REM " > CREATE NEW ACCOUNT <<€l
110 CLS:PRINT"CREATE NEW LAYAWAY ACCOUNT..."“:PRINTSTRING$(60,131):LINE
INPUT"NAME (END) : ";N$:IFN$="END"THEN50
120 LINEINPUT"ADDRESS LINE #1 : ";A1$:LINEINPUT"ADDRESS LINE #2 : ";A2
$:LINEINPUT"TELEPHONE (NNN-NNNN) : ";T$:LINEINPUT"SOCIAL SECURITY
NUMBER (SSS-SS-SSSS) : “;S$%
130 LINEINPUT"DRIVER'S LICENCE # : “;L$:LINEINPUT“PLACE OF WORK : “;W$
:LINEINPUT"ITEM DESCRIPTION : “;I$
140 PRINT:LINEINPUT“PICK-UP DATE (MM/DD/YY) : “;PI$:IFLEN(PI$)<>8THEN1
40
150 LINEINPUT"SALE AMOUNT : ";SA$:SA=VAL({SA$): IFSA=<OTHEN150
160 LINEINPUT"DOWN PAYMENT : ";PA$:PA=VAL(PAS): IFPACOTHEN160
170 PRINT:LINEINPUT"CORRECT (Y/N) ";Y$:IFY$="N"THEN210
180 IFY$<O"Y"THEN170ELSELETC=LOF(1)+1
190 FORL=1TOLOF(1):IFK(L)=0LETC=L:GOTO 205
200 NEXT L
205 GOSUB 850 : PUT 1,C : K(C)=1 : GOTO 290
210 IFC=300THENS4OELSELETNG="":A1§="": A25="":T§="":S§="":L$=""1W$=""11
$="":SA=0:PA=0:P1$="":C=0:G0T0110
220 REM " > LIST OF ACCOUNTS <<<{<<<<<LLELLLCLLClel
230 CLS:PRINT"LIST OF ACCOUNTS...":PRINT:LINEINPUT“HIT (ENTER) WHEN PR
INTER IS READY ... ";Z$:G0SUB280
240 FORJ=1TOLOF(1):GET1,d: IFK(J)=0ONEXTJ:G0T0O270
250 C=CVI{CODE$):DR=CVD(DR$):CR=CVD(CR$):T1=T1+DR:T2=T2+CR:L0=L0+1:IFL
0>5060SUB280
260 LPRINTUSING" ####";C; :LPRINT" “;NAM$;" “;SS$;" ";:LPRINTUSINGMS$;D
R;CR3DR-CR:NEXTJ
270 LPRINT:LPRINT"TOTALS";TAB(50)USINGM1$;T1;T2;T1~T2:T1=0:T2=0:L0=0:P
0=0:G607T050
280 GOSUB930:LPRINT"LIST OF ACCOUNTS PAGE : “;PO:LPRINT:LP
RINT'CODE NAME";TAB(35)"SOCIAL SECURITY DEBITS CREDITS BAL
ANCE" :LPRINT :RETURN
290 CLS:PRINT"ABOUT TO PRINT DATA SHEET...":PRINT:LINEINPUT"HIT (ENTER
) WHEN PRINTER IS READY ..."“;Z$:G0SUB930
300 LPRINTMCUSTOMER DATA SHEET":LPRINT:LPRINTSTRING$(70,"*"):LPRINT:LP
RINT
310 LPRINT"ACCOUNT CODE : ";USING"###";C:LPRINT:LPRINT"NAME : ";N$:LPR
INT:LPRINT"ADDRESS : ";Al$:LPRINTTAB(10)A2$:LPRINT
320 LPRINT"TELEPHONE : “;T$:LPRINT:LPRINT"SOCIAL SECURITY : ";S$:LPRIN
T:LPRINT'LICENCE : ";L$:LPRINT:LPRINT"PLACE OF WORK : "“;W$
330 LPRINT:LPRINT"DESCRIPTION : “;I$:LPRINT:LPRINT"PURCHASE DATE : ";D
$:LPRINT:LPRINT"PICK-UP DATE : ";PU$:LPRINT:LPRINT"GROSS AMOUNT :
"SUSINGMS$; SA:LPRINT
340 LPRINT“PAYMENTS : ";USINGMS$;PA:LPRINT:LPRINT"BALANCE DUE : ";USING
M$;SA-PA:LPRINT:LPRINTSTRING${75,"*"):LPRINT:G0T0210
350 REM “ > ENTER PAYMENTES <<<<<LLCLCLLLLCLLLLLLKL4<LLLK
360 CLS:PRINT"ENTER PAYMENTS...":LINEINPUT"ENTER CUSTOMER CODE (END) :
" C$: IFCS="END"THENS0
370 C=VAL(C$): IFCOLOF(1)THEN36OELSEGET],C
380 PRINTTAB(10)NAM$:LINEINPUT“IS THIS CORRECT? (Y/N) ";Y$:IFY$="N"THE
Program continued

Encyclopedia
ycheI 2

9

390
400
410
420
430
440
450
460

47

(=4

480
490

500
510

520
530

540
550
560
570
580
590
600
610

620
630
640
650
660
670
680
690

70

o o

71
720

730

740

750
760

770
780
790
800
810

820

business

N360ELSEPRINTSTRINGS(60,131)

LINEINPUT"CHECK NUMBER (OR CASH) ";R$:I1FR$=""THEN390

LINEINPUT"AMOUNT PAID : ";PA$:PA=VAL(PA$): IFPA<=0THEN40O

PRINT:LINEINPUT"CORRECT? (Y/N) ";Y$:1FY$="N"THEN440
TFY$<>"Y"THEN410EL SEGOT0460

LETPA=PA+CVD(CR$) : LSETCR$= MKD$(PA) LSETLP$=D$:PUTL,C

PA=0:C=0:PA§="":R$="":C$="":G0T0360

REM"PRINT CASH RECEIPT SLIP...

CLS:PRINT"ABOUT TO PRINT CASH RECEIPT SLIP...":PRINT:LINEINPUT"HIT

(ENTER) WHEN PRINTER IS READY ... “;Z$:GOSUB930

LPRINT"CASH RECEIPT SLIP":LPRINT:LPRINT:LPRINTTAB(45)"DATE : ";D$:
LPRINT:LPRINT"RECEIVED FROM : ";NAM$:LPRINTTAB(16)AL$:LPRINTTAB(1
6)BL$; TAB(40)SS$

LPRINT:LPRINT:LPRINT"THE AMOUNT OF ";USINGM$;PA;:LPRINT" TO BE CRE
DITED TO ACCOUNT NUMBER ";C

LPRINT:LPRINT"REFERENCE : “;R$:LPRINTTAB(40)" wmwoommamc e
------------- ":LPRINTTAB(45)"RECEIVED BY ":LPRINT"THANK YOU.":LPR
INT:LPRINTSTRING$ (75, "*"):LPRINT :G0T0430

REM " > ENTER ADJUSTMENTS <<<<<LCCLLLCLLCELLLLLLLLL’LCK

CLS:PRINT"ENTER ADJUSTMENTS...":LINEINPUT"ENTER CUSTOMER CODE (END
) ¢ ";C$:IFC$="END"THENSO

C=VAL(C$):IFCOLOF(1)THENSI10ELSEGET1,C

PRINTTAB(10)NAMS : LINEINPUT"IS THIS CORRECTZ (Y/N) “;Y$:IFY$="N"THE
N510ELSEPRINTSTRING$(60,131)

LINEINPUT"ADJUSTMENT REFERENCE “;R$:IFR$=""THENS40

LINEINPUT"AMOUNT : “;PA$:PA=VAL(PA$): IFPA=0THEN550

PRINT:LINEINPUT"CORRECT? (Y/N) ";Y$:IFY$="N"THEN590

LETPA=PA+CVD(CR$): LSETCR$=MKD$(PA):PUT1,C:GOTO590
[FP1>OLETPA=PA+CVD(DRS) : LSETDR$=MKD$ (PA): PUT1,C

PA=0:C=0:PA§="":R$="":C$="":GOTO510

REM " > PRINT ACCOUNT STATUS <<<<<LCLLCLLLLCLLLLLLLLKLCekK

CLS:PRINT"ACCOUNT STATUS":LINEINPUT'ENTER CUSTOMER CODE (END) : "
C$:IFC$="END"THEN50

C=VAL(C$):IFCOLOF (1)THEN61OELSEGET1,C:SA=CVD(DR$) : PA=CVD(CR$)

CLS:PRINT“CUSTOMER ACCOUNT STATUS":PRINTSTRING${60, "*")

PRINT"NAME : ";NAMS:PRINT"ADDRESS : “;AL$:PRINTTAB(10)BL$

PRINT"TELEPHONE : “;TELES,"SOCIAL SECURITY : ";SS$:PRINT'LICENCE :
";LI$;" EMPLOYER : ";JOB$:PRINT“DESCRIPTION : “;DESC$

PRINT"PURCHASE DATE : ";P0$,"PICK-UP DATE : ";PU$:PRINT"GROSS AMOU
NT : “;USINGM$; SA

PRINT"PAYMENTS : ";USINGM$;PA:PRINT"BALANCE DUE : ";USINGM$;SA-PA:
PRINTSTRING$ (60, "*")

LINEINPUT"DO YOU WISH A HARDCOPY PRINTOUT? (Y/N) “;Y$:IFY$="N"THEN
610

CLS:PRINT"ABOUT TO PRINT ACCOUNT STATUS...":PRINT:LINEINPUT"HIT (E
NTER) WHEN PRINTER IS READY ...";Z$:GOSUB930

LPRINT"CUSTOMER ACCOUNT STATUS":LPRINT:LPRINTSTRING$(70,"*"}:LPRIN
T:LPRINT

LPRINT"ACCOUNT CODE : “;USING"###";C:LPRINT:LPRINT"NAME : ";NAM$:L
PRINT:LPRINT"ADDRESS : ";AL$:LPRINTTAB(10)BL$:LPRINT

LPRINT"TELEPHONE : ";TELE$:LPRINT:LPRINT"SOCIAL SECURITY : ";SS$:L
PRINT:LPRINT"LICENCE : ";LIC$:LPRINT:LPRINT“PLACE OF WORK : ";J0B

$
LPRINT:LPRINT"DESCRIPTION : ";DESC$:LPRINT:LPRINT"PURCHASE DATE
";PO$:LPRINT:LPRINT"PICK-UP DATE : “;PU$:LPRINT:LPRINT"GROSS AMOU
NT : ";USINGM$;SA:LPRINT
LPRINT"PAYMENTS : “;USINGM$;PA:LPRINT:LPRINT"BALANCE DUE : ";USING
M$;SA-PA:LPRINT:LPRINTSTRING$(75, "*") :LPRINT :GOT050
REM " > UNDELIVERED ACCOUNTS REPORT <<<<<<{SCCCLLLLKLLLLK
CLS:PRINT“LIST UNDELIVERED ACCOUNTS...":PRINT:LINEINPUT"HIT (ENTER
) WHEN PRINTER IS READY ... ";Z%:GOSUBB3Q
DU$=RIGHT$(D$,2)+LEFT$(D$,2)+MI1D$(D$,4,2)
FORJ=1TOLOF (1):GETI,d : IFK({J)=ONEXTJ :60T0820
PD$=RIGHT$(PUS, 2 J+LEFT$ (PUS,2)+MIDS(PUS,4,2) : IFPD$>DUSNEXTY :GOTO82
0

C=CVI(CODES$):DR=CVD(DR$):CR=CVD(CR$): T1=T1+DR: T2=T2+CR:L.0=L0+3: IFL
0>50G0SUB830

LPRINTUSING" ####" ; C:LPRINTNAMS 3 *;PU$;" “;LP$;" ";:LPRINTUSING
M$;DR ; CR ; DR-CR :LPRINT :NEXTJ
LPRINT:LPRINT*TOTALS" ; TAB(49)USINGM$;T1;72;T1-T2:71=0:T72=0:10=0:P0

10

business

=0:G0T050

830 GOSUB330:LPRINT“UNDELIVERED ACCOUNTS PAGE : ";PO:LPRIN
T"AS OF : ";D$:LPRINT:LPRINT“CODE":LPRINT"NAME";TAB(30)"PICK-UP
LAST PAID DEBITS CREDITS BALANCE":LPRINT:RETURN

840 REM " > LAYPLAN FILE INTIALIZATION <<<<<CCCLLCCCLLCCCKLKLC

850 LSETCODE$=MKI$(C):LSETNAM$=N$:LSETAL$=A1$: LSETBLS=A2$:LSETTELES=TS
(LSETSS$=S$:LSETLICS=L$:LSETIOBS=H$:LSETDESCS=1$:LSETDR§=MKD$ (SA)
:LSETCR$=MKD$ (PA) : LSETPO$=D$:LSETPU$=PI$:LSETLP$=D$:RETURN

860 CLS:PRINT“READING DATA FILE...":PRINT

870 OPEN"R",1,"LAYPLAN":FIELD1,4 AS CODE$,30 AS NAMS$,30 AS AL$,30 AS B
L$,8 AS TELE$,11 AS SS$,9 AS LIC$,30 AS J0B$,50 AS DESC$,8 AS DR$
,8 AS CR$,8 AS P0$,8 AS PU$,8 AS LP$:X9=9

880 FORL=1TOLOF(1):GET1,L:PRINTL;:

890 DR=CVD(DR$):CR=CVD(CR$):IFDR-CR{>OLETK(L)=1ELSEK(L)=0

900 NEXTL:RETURN

910 CLS:CLOSE:CLEARS0:END

920 REM " > TOP OF FORM (PAPER ADVANCE) ROUTINE <<<<<<K<KLKK

930 FORL=1TO5:LPRINT:NEXTL:L0=0:P0=P0+1:RETURN

940 CLS:PRINT“THERE ARE 300 DATA RECORDS ON FILE...":PRINT:PRINT"THIS
IS THE MAXIMUM ALLOWABLE PER DISC.":PRINT:PRINT"INSERT ANOTHER DI
T

950 PRINT:PRINT"REMEMBER TO LABEL IT!":CLOSE:X9=0:PRINT:LINEINPUT"HIT
(ENTER) WHEN READY...";Z$:G0T050

11

BUSINESS

Your Fair Share
by Nate Salsbury

current popular savings method is investing in money market mutual
funds to obtain higher interest rates. Most of these funds require an in-
itial deposit of $1000 or more.

When the statement from your fund arrives showing that your account
has earned $143.82 in interest, have you ever wondered how to distribute it
equitably among the several purposes for which you have made deposits at
various times during the period? This program (see Program Listing) allows
you to apportion your earnings to your mental subaccounts. As a bonus, you
are able to evaluate the effective annual rate of interest as if your funds had
been deposited in a savings account with a steady rate of interest, com-
pounded daily over the period being reviewed. You can then compare this
rate with that offered by other investment opportunities.

This program covers the various aspects of the problem in their simplest
form. You can modify or expand it to meet your personal requirements or to
add some bells and whistles to the screen display.

Most current types of investment offer daily compounding of interest. To
keep track of this, you need a method of establishing the number of days be-
tween any two calendar dates. The subroutine in lines 1000-1130 deter-
mines the number of days from the start of a year to any date in that year.
The date is expressed numerically. March 27, for example, is represented by
3,27. When you know the day of the year for each of the two dates, the
number of days between them is obtained by simple subtraction.

Lines 1000-1030 ensure that M, the number which has been INPUT for
the month, is a number from 1 to 12, while lines 1040-1060 ensure that the
day of the month, variable D, is a number from 1 to 31, There are 12 items,
one for each month, in the DATA list at line 1070. Each entry represents the
number of days in the year up to the start of the month you are dealing with.,
For example, the third entry shows that there are 59 days in the year up to
the beginning of March. Forget about leap years. For the dollar amounts
you are working with, the difference is insignificant.

Lines 1080-1120 read the number of days up to the start of month, M,
then add D days to obtain the number of days from the start of the year to
the specified date. This result is stored in variable DN. Next, RESTORE
allows you to use the routine over.

12

business

Calculating Interest

Suppose that you open an account on the first of January with a $1000
deposit. On July 1, you make a deposit of $1000. To simplify the analysis,
assume that this is a savings account which has a constant interest rate
throughout the year. You can calculate the total interest earned from these
transactions by these two methods.

@ The first method is to calculate the interest earned in the first six months
on the initial $1000 deposit. On July 1, add that interest plus the second de-
posit of $1000 to the original $1000 to obtain a balance of $2000 plus the in-
terest earned to date. This is the figure you would find in a savings passbook
after the July 1 deposit of $1000. Now, calculate the interest which would be
earned on this total to the end of the year. Add this interest to the amount
earned up to June 30 and you have the total interest earned for the year.

@ Another method is to calculate the interest earned by the initial $1000
deposit for a full year, then calculate the interest earned on the second $1000
deposit for six months. Add the two results. The result is identical to the
result obtained by the first method.

You can analyze the money on deposit at the start of the period and each
deposit and withdrawal to determine the interest contribution from each
one. At the end of a period, you can combine the results arithmetically. 1
found this approach easier to program.

Suppose that you deposit $200 at the beginning of the period. Then, in the
middle of the period, you add $500 intended for another purpose. How do
you distribute the interest proceeds between the two causes at the end of the
period? For discussion, assume that the period in question is a 30-day
month, and these are the only transactions.

The $200 deposit earned interest for the full 30 days, while the $500
deposit earned interest for only 15 days. If you multiply the number of
dollars on deposit by the number of days during which they earned interest,
you obtain a measure of the weight each deposit had in the final interest pay-
ment. In this case, the $200 for 30 days contributed 6000 dollar days
($200 x 30 days), while the $500 deposit contributed 7500 dollar days
(3500 x 15 days). The two deposits together, which produced the total in-
terest payment, contributed 13,500 dollar days. Therefore, the account for
which the $200 deposit was made receives 6000/13,500 or 44.4 percent of the
interest received, while the account for which you deposited $500 receives
credit for 7500/13,500 or 55.6 percent of the interest earned.

The concept of multiplying dollars by the number of days invested is a
straightforward means of comparing the effects of various transactions
made at different times. This same concept applied as a negative result ap-
plies to funds withdrawn during the period. The main program outlines the
steps I took to implement these concepts. It involves no neat formatting of

13

business

the screen displays, no special printouts, and very little error checking of
keyboard inputs because you probably want to customize these features for
your own situation.

Lines 20-70 establish the day of the year for the starting and ending dates
of the period under review. Line 1110 handles periods which include De-
cember 31. Lines 80-190 accumulate the opening balance of each account
plus all the transactions during the period. This information is stored in ar-
ray CH(). The day of the year associated with each entry is stored in array
N3().

At line 200, the transactions for each account and their accompanying
days of the year are stored in master arrays DT() and CD() by subroutine
2000. Similar entries for the opening balance of each account are made at
line 100. Next, lines 210270 calculate the dollar days for each transaction in
the subaccount.

Lines 230-240 accumulate the total dollar days for all transactions in a
particular subaccount in variable W. Line 250 calculates the net dollar
changes of all transactions in the subaccount. Finally, you calculate the
dollar days for the opening balance of each subaccount and add them to the
transaction total in line 270. The array variable WT(AN) now contains the
total weighting factor of dollar days for the subaccount under consideration.

Line 280 stores the final balance of the account, that is, the balance just
before interest is added, and line 290 stores the opening balance. I used this
feature in my personal program as part of a report. The array OB() is not
used in subsequent calculations in this listing.

The intermediate arrays CH() and N3() are set to zero to prepare for en-
tries associated with the next subaccount in lines 310-330. In line 340, you
determine whether there are more subaccounts and, if there are, the pro-
gram loops back to line 80. Otherwise, the program has received all of the
necessary data and continues to line 360 where the final income distribution

is made.
All of the dollar days for each account are added together in lines 360-380

to obtain the total of all the weighting factors. After you enter the total in-
terest earned in the period in line 390, the program distributes this income to
each account according to your weighting factor analysis and stores the
distributed amounts in array ID().

Getting Your Fair Share

At this point, the key information developed by the program is available
in three arrays where it is easily accessible for reports or calculations. Lines
430-460 outline what data is stored and where it is located. Lines 470-490
print on the screen the final balance in each subaccount after distribution of
the interest earned by the total account. Note that the amount shown here as
the closing balance is the figure you enter in the next period as the opening
balance for each account.

14

business

Could I Do Better?

If your investment is in a money market fund, you have already noted
that the equivalent annual interest rates fluctuate. Actual current daily rates
react rapidly to changes in the prime interest rate. I wanted to determine the
effective annual rate which I actually received over any period under
review. This is calculated in lines 495-730 to within .1 percent. The process
takes as much as 45 seconds if you are enjoying a rate near 20 percent and
have a lot of transactions.

In lines 510-540, the program determines the current total value of your
account. The program assumes a fixed interest rate, variable I in line 560,
then calculates the final value of your account as if all the transactions you
made had occurred at that fixed rate. The final result, variable S in line 600,
is subtracted from TV, the actual total value. If the result is positive, the
assumed interest rate was too low. The rate is then increased, and the pro-
cess repeats. This is done in a FOR-NEXT loop in lines 560-640 over the
range of four percent to 25 percent in increments of one percent.

When the difference becomes negative, the present value of I is one per-
cent too high. In line 660, change the range of the loop to enclose the cross-
over point and change the step size to .1 percent. Then repeat the whole
comparison process. Line 650 is a switch which limits this routine to two
iterations. The rest of the main program, lines 690-750, prints out the result
of this test.

Using this program, you can distribute your gross interest properly to all
your subaccounts and, in addition, track the effective annual interest rate,
with daily compounding, which you are receiving.

15

1R
2R
3R
4R
50
0

79

@
w0

90

100
110

120

125

130

140
145

business

Program Listing, Your Fair Share

EM "YOUR FAIR SHARE"

EM by NATE SALSBURY

EM 608 Madam Moore's Lane

£EM New Bern, NC 28560

N ERROR GOTQ 2100

CLS

INPUT "ENTER START OF PERIOD (MONTH #, DAY)"; M1,D1
M=Ml:D =Dl

GOSUB 1000
IFFM =1 THEN ML = M: FM = 0
IFFD = 1 THEN D1 = D: FD =

0
SD$ = STR$(ML) + " /" + STR$(D1)
N1 = DN: REM Nl= DAY OF YEAR WHEN PERIOD STARTS
INPUT "ENTER END OF PERIOD (MONTH #, DAY)"; M2,02

M=M2: D= D2

GOSUB 1000

IFFM = 1 THEN M2 = M: FM = 0

IFFD = 1 THEN D2 = D: FD = 0

ED$ = STR$(M2) + " /" + STR$(D2)

N2 = DN: REM N2 = DAY OF YEAR WHEN PERIOD ENDS

CLS: PRINT "HOW MANY ACTIVE ACCOUNTS/CATEGORIES WERE THERE IN THE P
ERIOD": PRINT "FROM " SD$ " TO “ ED$;: INPUT Al

INPUT “ENTER THE TOTAL NUMBER OF TRANSACTIONS (DEPOSITS AND/OR WITH
DRAWALS) WHICH YOU MADE IN THIS PERIOD ";A2

A3 = 2%A1 + A2: DIM DT(A3), CD(A3), N3(A3), CH(A3)

€D(0) = N2

REM NEXT 'INPUT' ASSUMES THAT EACH SUBSECTION OF THE FUND IS CODED
WITH AN ACCOUNT # (1,2,3 ETC.)

CLS: INPUT "ENTER IDENTIFYING ACCOUNT NUMBER FOR THIS PART OF THE F
UND"; AN

REM THE NEXT 'INPUT' REQUESTS THE BALANCE OF THIS SUBACCOUNT AT THE

END OF THE PREVIOUS REVIEW. IF THERE IS NO PREVIOUS BALANCE,
ENTER O

PRINT "ENTER BALANCE FOR ACCOUNT #"; AN; "AT THE START OF THIS PERI
00"
INPUT 0B: K = K + 1: DT(K) = 08: CD(K) = NI
PRINT "DID YOU ADD OR DEDUCT ANY AMOUNTS FROM ACCOUNT #" AN: PRINT

"IN THIS PERIOD (Y / N)"; : INPUT Y§

IF ¥§ = “N" GOTO 200
IF ¥$ <> "Y" THEN 110
PRINT "ENTER (MONTH #, DAY) WHEN A CHANGE WAS MADE TO ACCOUNT #°;
AN : INPUT M,D

GOSUB 1000: N3 = DN: IF N1<=N3 AND N3<=N2 THEN 150
PRINT STR§(M) + " /" + STR$(D) " IS NOT IN THE PERIOD FROM" SD§ °
TO " ED$: PRINT: PRINT"PLEASE REENTER IT": PRINT: GOTO 130

150 INPUT “ENTER THE DOLLAR CHANGE MADE ON THIS DATE. (SHOW WITHDRAWA

LS WITH A MINUS SIGN E,G, -500.75)"; CH

160 I =1 + 1: REM I = ITEM # OF A CHANGE IN THIS ACCOUNT IN THIS PERI

0D

170 N3(I) = N3: CH(X) = CH
180 PRINT: PRINT “ARE THERE ANY OTHER ADDITIONS AND/OR WITHDRAWALS TO

ACCOUNT #"; AN; “IN THIS PERIOD (Y / N)": INPUT Y$

190 IF ¥Y§ = "Y" THEN PRINT: GOTO 130

195
199

200
209

210
220
230

240
250

IF ¥Y$ ¢ "N THEN 180

REM AT THIS POINT, ALL CHANGES TO THE ACCOUNT HAVE BEEN STORED IN
ARRAYS

GOSUB 2000: REM THIS STORES THE ACCOUNT DATE IN THE MASTER ARRAY

REM LINES 210 - 290 CALCULATE 'DOLLARS * DAYS' FOR EACH TRANSACTIO
N AND KEEP A RUNNING BALANCE FOR THE ACCOUNT, NEGLECTING INTEREST
ACCUMULATION

W=0: X=0

FORA=1T0I

Y = CH(A) * (N2 - N3(A)): REM CALCULATE 'DOLLARS * DAYS' FOR EACH
CHANGE IN THE ACCT

W =W+ Y: REM CUMULATIVE 'DOLLARS * DAYS' FOR ALL CHANGES

X = X + CH(A): REM TOTAL OF ALL DOLLAR CHANGES TO ACCOUNT FROM ADD
ITIONS AND/OR WITHDRAWALS

Encyclopedia
ychpa%er“

16

business

260 NEXT A

269 REM CALCULATE 'DOLLARS * DAYS' FOR OPENING BALANCE AND ACCUMLATED
TOTAL FOR ALL CHANGES

270 WT(AN) = OB * (N2 - N1} +

280 B{AN) = 0B + X: REM B(AN) S THE FINAL BALANCE IN THE ACCOUNT, IGN
ORING INTEREST

290 0B(AN) = 0B

3001 =0

310 FOR A = 1 T0 A3

320 CH(A) = 0: N3(A) =

330 NEXT A

340 INPUT "ARE THERE ANY MORE ACCOUNTS (Y / N)*;V$
350 IF Y$ = "Y* THEN 80

I

355 IF Y$ = “N" THEN CLS ELSE 340

359 REM FINAL PROCESSING - DISTRIBUTION OF INCOME
360 FOR A = 1 T0 10

370 WF = WF + WT(A)

380 NEXT A
390 PRINT: PRINT: PRINT: INPUT “ENTER TOTAL INTEREST RECEIVED IN THIS
PERIOD"; TI

400 FOR A = 1 T0 10

410 ID(A) = (WT(A) / WF) * TI

420 NEXT A

430 REM AT THIS POINT, ALL PERTINENT ACCOUNT INFORMATION IS STORED IN
ARRAYS

440 REM 0B() = BALANCE IN THE ACCOUNT AT START OF PERIOD

450 REM B() = BALANCE IN THE ACCOUNT AT END OF PERIOD EXCEPT FOR INTER
EST

460 REM ID() = DISTRIBUTION OF INTEREST TO EACH ACCOUNT

470 CLS: PRINT @ 64, "ACCOUNT NUMBER", , "CLOSING BALANCE"

480 FOR A = 1 TO 10

485 PRINT TAB(4) USING "##"; A; : PRINT ,, USING "$ #&, &84 #4"; B(A) +

1D(A)

490 NEXT A

495 PRINT: PRINT TAB(16) “CALCULATING INTEREST";

500 REM FROM THIS POINT, THE PROGRAM CALCULATES THE 'EQUIVALENT ANNUAL

INTEREST RATE' BASED ON THE INTEREST JUST RECORDED, THE VARIQUS

TRANSACTIONS IN THE ACCOUNT AND THE LENGTHS OF TIME THEY WERE INV
ESTED AND, THEREFORE, EARNED INTEREST.

510 FOR A = 1 T0 10

520 V = B(A) + ID(A): REM THIS IS THE FINAL VALUE IN EACH ACCT AFTER I
NTEREST DISTRIBUTION

530 TV = TV + V: REM THIS IS THE TOTAL VALUE OF THE FUND

540 NEXT A

550 AL = .04: AH = .25: C

560 FOR I = AL TO AH STEP

570 FOR J = 1 TO K REM K

580 D

590 A

600 S

610 NEXT

620 IF TV - S > 0 ELSE GOTO 650

630 S =0

640 NEXT 1

650 ¢ = Q + 1: IF = 2 GOTO 690

660 AL = 1 - .0l: AH = I: C = .001

670 S =

680 GOTO 560

590 PRINT: PRINT “IF THE INTEREST RATE HAD BEEN CONSTANT OVER THIS PER
10D, THE EFFECTIVE ANNUAL RATE WOULD HAVE BEEN"

710 PRINT TAB(5) "BETWEEN “s (1 - .001) * 1003 "AND® ; I * 100; “
% COMPOUNDED DAILY";

720 REM IF THE RANGE SHOWN AT LINE 710 IS '25 T0 25.1 % ' THEN THE A
CTUAL RATE IS MORE THAN 25 %

730 REM IF THE RANGE SHOWN AT LINE 710 IS '2.9 T0 3% ' THEN THE ACTUA
L RATE IS LESS THAN 4%

740 GOTO 740

750 END

1000 REM CALCULATE NUMBER OF DAYS FROM START OF YEAR TO DATES INPUT ER
OM KEYBOARD ('M' FOR MONTH NUMBER, 'D' FOR DAY OF THE MONTH) Program continued

.01

B ou

J T 1O TOTAL NUMBER OF ALL TRANSACTIONS
D

0T(J) * (1 + 1/365) [D
S+ A

J

>< [l

17

1009
1010
1020
1030
1035
1040
1050
1060
1065

1070
1080
1090
1100
1110

1120
1130
2000
2010
2020
2030
2040
2050
2100
2110
2120
2130

business

REM CHECK HERE FOR VALID MONTH NUMBER

IF M > 0 AND M < 13 GOTO 1040

PRINT M; "IS NOT A MONTH NUMBER. PLEASE CORRECT": FM = 1
INPUT #: GOTO 1010

REM GHECK HERE FOR VALID DAY OF THE MONTH

IF D >0 AND D < 32 GOTO 1080

PRINT D; IS NOT A DAY IN ANY MONTH. PLEASE CORRECT": FD =1
INPUT D: GOTO 1040

REM DATA ITEMS ARE THE NUMBER OF DAYS FROM START OF THE YEAR TO T
HE END OF THE PRECEDING MONTH, FOR EACH MONTH OF THE YEAR
DATA 0,31,59,90,120,151,181,212,243,273,304,334

FOR A=1TOM

READ DN: NEXT A

DN = DN + D: REM ADD # OF DAYS IN CURRENT MONTH

IF DN < N1 THEN DN = DN + 365: REM CORRECTION IF DEC 31 IS IN THE
PERIOD

RESTORE

RETURN

REM TRANSFER ALL INDIVIDUAL CHANGES TO MASTER ARRAY

FOR A =1 T0 I: REM I = # ITEMS ENTERED FOR A SINGLE ACCT
K = K+ 1: REM K = TOTAL NUMBER OF ALL CHANGES

DT(K) = CH(A): REM STORE $ CHANGES
CD(K) = N3(A): REM STORE DAY OF THE YEAR NUMBER
NEXT A: RETURN

IF ERR/2 + 1 = 9 THEN 2120

ON ERROR GOTO 0: RESUME

CLS: PRINT @ 512, “TOO MANY ENTRIES. REVIEW DATA AND RERUN."
ON ERROR GOTO 0O: RESUME

18

EDUCATION

Do-It-Yourself Maze Package
Getting Your Bearings

19

EDUCATION

Do-It-Yourself Maze Package

by Anne Weiss

here is an abundance of maze and adventure games available for com-

puter users. Many of them are quite good, highly involved, take days or
weeks to solve, and are very expensive. If you love and can afford such pro-
grams, this article is probably not for you. But, if you are involved with
teaching a much larger number of students than the number of computers
available, this might be of interest.

We at St. Peter’s High School were in just such a situation. There are two
Model I 16K Level II Radio Shack computers to accommodate between 15
and 20 students at a time. Part of the problem is alleviated somewhat by
scheduling each student into at least one 40-minute lab period per week.
That way, we can guarantee weekly computer time with two students to a
machine. That solution seemed short-lived when 32 seniors signed up for the
computing course. Since I couldn’t tell them to wait until next year, and 1
didn’t want to turn them away, I had to do some improvising. The first step
was to divide the course into two one-semester courses.

While the split solved the numbers problem, it added another prob-
lem—that of concentrating 10 months worth of four classes and a lab into
five months. I didn’t want the course to become heavily structured with very
little student involvement. The trick then was to consolidate without taking
the life out of the course. I developed the following package as one means
towards a no-frills, meaningful course. The activity is good for students who
enjoy programming and also those who just want to know how to use the
computer. To use this package, the students should know the start-up se-
quence, how to use PRINT statements, and how to use the cassette recorder.

A word of caution: The finished product will not set any software
publisher’s heart to pounding. The package is meant as a fun exercise to
open doors into methods of computing. The students get to see a variety of
BASIC expressions at work (REM, LET, FOR-NEXT, READ, DATA, string
and numeric variables, numeric arrays, ON-GOSUB, RETURN, PRINT,
INPUT, LEFTS$, IF-THEN, GOTO, END, RUN) along with methods of er-
ror checking. Less proficient students know that if they just follow direc-
tions, the program will work. The coding sheets make debugging a bit

21

education

easier. Even typing teaches the student how to enter information into the
computer.

A more creative student can use this exercise as a starting point to design
larger and more involved mazes and add treasures and obstacles to the pro-
gram. My students like to add graphics and flashing screen displays.

Although this activity is considered a package, students do not get all the
components at once. Each sheet is given out or described at the appropriate
time. I have written the lessons as if they were on individual sheets for each
student, but some of the information can be given verbally or on the black-
board. I have also included time, materials, and outcomes for each lesson. I
have included the listing for a maze created by Steve Armistead, class of
1981.

Lesson 1: Introduction

Time: One to three sessions, depending on the class size and the
number of computers.
Materials: TRS-80 Model I 16K Level 11
Copy of Monster’s Gold program
Paper and pencil
Outcome: Students become familiar with computer adventures.
Use of the computer is reinforced.
Students work together as a group and use logic to solve a
problem.
Load the Monster’s Gold program into the computer so it is ready to run.
It is a maze game which contains 25 squares. The object is to travel in and
out of the squares by moving in one of the four compass directions.
Sometimes your path is blocked, and you must change direction. You can
also go through a magic door and end up far away from where you were.
You might be lucky and find the treasure. Then again, you might fall into
a trapl!
See if you can solve the puzzle. Try to make a map based on your moves.
Remember, there’s magic at work here. A single move can bring you into the
next square, or maybe 10 squares away. Have fun!

Lesson 2: Following a Maze Map

Time: One session
Materials: Computer

Tape of Monster’s Gold Program

Map for Monster’s Gold (Figure 1)
Outcome: Learn to read and follow a maze map

Look at the grid in Figure 1. It represents the paths through the Monster’s

Gold maze. There are four ways to move from each square. The arrows
show where you wind up after each move. Blocked exits are marked with a
heavy line,

22

education

——— | |

l T t 1 |
l— 1 = 2 T s Sz & _I. s —
| t 4 1 /4]
T [B 7T
<6 T 7 - 8 7 9 1T 0 T
[At | —] I [1
IR v R vl N/
T n\ I35 2 2O o3 s b os
T Hrorh
- DEATH TRAP m DEATH TRAP
— 6 \—— 7 ,_I:? 18 __‘:I‘“?g ~_‘:— 20]
Y 4 At | v d
Y 1 e | |
21 ef— 22 -t 23 24 25
i““ | ‘—‘-’? | “—“’? —‘”‘-L r& 1 —————-.;o 101

|
[|

Figure 1. Monster’s Gold map

Notice that you can move east from square 14 to get into square 15 but you
cannot move back from 15 into 14. If you are in square 21, you can get to
square 22 by moving either east or south. A move north from square 12
brings you into square 8.

How many times did you fall into the death traps when you were trying to
solve the maze? Play the game again, using the map to guide you. Is there
more than one solution path? See if you can label each square with a descrip-
tion such as high cave or damp cave.

Lesson 3: Designing a Maze

Time: One session
Materials: Grid sheet (Figure 2) and pencil

It is now time to design your own maze on a grid sheet. Choose the
number of the square at which you want your adventure to begin and write
start in that square. Use arrows to lay out a map of your maze. Remember,
each square has four possible exits, N,E,S,W. Use a heavy line to mark any
blocked exits. Include death traps or obstacles if you so desire. Label the
other squares with a one- or two-word description that goes along with your
topic. For example, Haunted House could have dungeons, grave yards, and
secret halls. Magic Forest could have princesses, castles, and streams.
Spooky School could have labs, lockers, and cafeterias. Let your imagina-
tion run wild! When this map is complete, you are ready to start describing
the squares in greater detail.

23

education

1 2 3 4 5
6 7 8 S 10
H i2 13 &3 15
16 17 8 19 20
21 22 23 24 25

Figure 2. Grid sheet
Lesson 4: Coding the Map

Time: Two to three sessions
Materials: Monster’s Gold Map (Figure 1)
Previously labeled grid sheet (Figure 2)
Coding sheet (Figure 3) and pencil
Outcome: Moves are coded for entrance into the program as DATA.
Refer to the Monster’s Gold map in Figure 1. If you were coding the infor-
mation, it would look like the following example.

Square § moveNto# moveEtof moveStof moveW tof

1 11 2 6 26
2 26 3 1 7
18 26 26 26 26

The blocked exits are denoted by 26. Notice that square 18 has only 26s,
since there is no exit from a death trap. The same would be true for a win-
ning square.

You must now do the same with your map. Note the results of the four
directions in each square. Use the coding form in Figure 3 and put the square
number at which you wind up after the move. Use 26 to indicate a blocked
exit. Include a five- or six-word description of each square.

Lesson 5: Writing the Program

Time: Two to three sessions

Materials: Monster’s Gold map (Figure 1)
Previously completed grid and coding form (Figures 2 and 3)
Program form (Figure 4) and pencil

24

education

program | square | if move [if move |if move | if move brief description
line # # N E S w of square
wind up | wind up | wind up| wind up
in # in # in# in #
1000 1
1010 2
1020 3
1030 4
1040 5
1050 6
1060 7
1070 8
1080 9
1090 10
1100 11
1110 12
1120 13
1130 14
1140 15
1150 16
1160 17
1170 18
1180 19
1190 20
1200 21
1210 22
1220 23
1230 24
1240 25
1250 26 blocked exit

Fill in your name and the name of your maze in line 10 of the program

Figure 3. Maze coding chart

form. Use PRINT statements in lines 30-130 to give directions.

You are now ready to program your map into the computer. First locate
the square marked start on your map. Find a square that leads into your
start square—that is the initial value of R in line 220. The value of D is the
direction needed to move out of R, where N=1, E=2, S=3, W =4. For an
example, look at the Monster’s Gold map. The starting square is square 1. In
order to get to square 1, you could move west (D =4) from square 11
(R =11). Other choices are R=19 and D=1, or R =25 and D = 2. Find an

25

education

appropriate choice for R and D in your maze and enter those values in line
220,

10 REM o vvara oot 000t ettt ttistirotossttterariiisoicessetncy
20 REM DESCRIFTION AND DIRECTIONS

<] N R R R R R R R R R R R N N R N N I I R I R
L 1 I I I IR I I N A S S I I I A S IR BN S SR I A IO IR
=1+ J R R R R R R R R R R R R R R I I R S A R I U
Py | R R N R R R R R R R R N R R R IR R S
4 T R R R R R R R R I R IR IR I R IR
BO evv o oot s 0o et taet et tererttetestitstaeiesttatesessnens
- I R R R R R R R R R RN N R I R R I
100 o oot o v s oo cn et e ertere o ettt eststassstetiatrieseistetsns
I O R R R R R R R R R R I I I
| R R N RN R R RN NN RN R R IO
< 1 A R R N R N N R N I IR I IR SR IO

140

150 REM INITIALIZE AND READ DATA

160 LET N=251 DIM S5(Ns4)

170 FOR R=1 TO N

180 FOR D=1 TO 4

190 READ 8(RyD)

200 NEXT D

210 NEXT R

220 LET R » v FLET D = woae

230 ¢

240 REM MAIN LOOF OF FPROGRAM

250 ON S(RyD) COSUE 1000,1010,1020,30630,10406,1050,1060,3070,1080,1090,1106,1110y
1120,1130,114051150,1160,2170,1380,1190,1200,12:0,1220,1230,12406,1250
260 IF R=0 THEN 1260

500 PRINT! PRINT

510 INFUT *WHICH WAY WOULD YOU LIKE 10 MOVE (NyEyS»W) "3Q%
520 FRINTS Qé¢=LEFT$(Q%,1)

B30 IF QF="N* THEN D=1! GOT0 250

540 IF Q$=°E* THEN D=2! GOTO 250

550 IF Q$=*S" THEN D=3! GOTO 250

©460 IF Q$="H* THEN D=4! GOTO 2350

570 FRINT *NO! NO! FAY ATTENTION NEXT TIME!®: GOTO 510
1000 REM SQUARE 1

1002 tevsverassstvceneeans

P R R R R R R R KRNI
F R R R R R RN R R R R R IR IR
R R R R R R R R RN RN)

1005 DATA veer 7 vrae 7 tecs ¥ taan

1009 LET R = ++¢s ¢ RETURN

1010 REM SQUARE 2

B F - R R R R R I I
P I S R I R R N I R I S I I I I
P R RN R R R R RE R R

1015 DATA svee 1 case 7 caes ¥ cssn

1019 LET R = +..s ¢ RETURN

1020 REM SQUARE 3

- T I R R IS S A SR S I SR I IR I S B S A S I AR R S B
R R R R R R R R R R R R R IR I
[RN R R RN R R N RN R R

1025 DATA cvee 7 taet 7 s4a e 7 coas

1029 LET R = +..¢ ¢ RETURN

1030 REM SQUARE 4

A032 ¢ oo e et 00t et o ot a1 808088 ereaeers it iaiiectseerttteasteitesatstss
R R RN R IR RN
I R R N R R R N A R

1035 DATA seer 9 caee 7 saee 1 cven

1039 LET R = ,.ss ¢ RETURN

1040 REM SQUARE O

L0 oo v es oo tatooes 10 a0t 000660 eetsasiaitaidiasisssesstastestsenss
P RN R R N N R NI R
R R R R R R R N IR R I

1045 DATA veee 1 tcee F 4014 7 sans

1049 LET R = +... ¢ RETURN

1050 REM SQUARE &

26

1655
1059
1060
1062

1065
1069
1070
1072

1075
1079
1080
1082

1085
1089
1090
1092

1093
1099
1100
1102

1105
1109
1110
1112

1115
1119
1120
1122

1125
1129
1130
11382

1135
1139
1140
1142

1145
1149
1150

1152

1155
1159
1160
1162

1165

D
D)

DATA
LET R

.

‘

.

.

.

.

.

‘e

REM SQUARE 7

DR R RN K]

R NN]

DR

DATA .
LET R

.

.

.

.

e

L]

4

REM SQUARE 8

e e
e e

e

DATA
LET R

.

.

.

.

.

.

.

¢ e

REM SQUARE 9

D RN

DR

DR

DATA
LET R

DRI

e ey

*

.

o

o

REM SQUARE 190

I NN I

D N I I I IR IR AT A

IR N RN

DATA 4o

LET R

REM SQUARE 11

D I R I I I AP

R RN I

D I R I I IR N

DATA .4

LET R

Cren
REM SQUARE 12

R N I NI

R N I A

D A A A

DATA .4y

LET R

e

REM SQUARE 13

D R I N A

e e e

D]

DATA
LET R

Sy

DRI

)

e

REM SQUARE 14

R R R N I I I 3

D I I IR I A

R N R R I I Y]

DATA
LET R

.

.

¢

r e

e

REM SQUARE 15

L A R I I I A ar

D N I I IS

N R R I I A I

DATA +.u.

LET R

+

r e

Ceq

REM SQUARE 16

DRI
R EEN]

DATA
LET R

Ceae e

e

e

e

.

r

e

REM SQUARE 17

tee e
R

IR EEE]

DATA

.

’

+

L

e de e

R ER]

.

¢

P

*

.

.

.

e
e

y

RETURN

e
e
i

RETURN

Caoa
e
e

y

“y
.

¢

.

‘ ‘.
RETURN

Y

e
y

RETURN

4

«

e e

DI

Ce e

’

RETURN

4

c

etk

DRI

R A AN

o7

<

RETURN

]

]

e

I I

’

RETURN

[

Cev e

DRI]

LA

“.r

RETURN

e

e

Ce s

e

« Y

RETURN

.

«

.

¢

¢

¢

+

Coese ey

I IR

e

y

RETURN

“t

¢

vt

e

e

r

RETURN

e

education

Program continued

1169
1170
1172

1175
1179
11890
1182

1185
1189
1190
1192

1195
1199
1200

1202

1205
1209
1210

1212

1215
1219
1220
1222

1225
1229
1230

1232

1235
1239
1240

1242

1245
1249
1250

1252

1259
1260
1270
1280
1290
1300
1310

There are 25 small segments of the program that you must now fill in on
the program form—one for each square. You must fully expand the
descriptions of your square to include everything that you want on the
screen. In addition to telling about the particular square, you can give

LET R = 4440 | RETURN
REM SQUARE 18

R R R I NI
RN RN R IR

D N R A A I A I]

DATA viev 7 cece 7t
LET R = +4eve | RETURN
REM SQUARE 19

R NI I I I I I
RN RN TR
R NN NN
DATA e 7 vave 7 1 en
LET R = .o ! RETURN
REM SRUARE 20

S R I N I IR
[I N I
I N ERE R
DATA veve v voee v can
LET R = «+e¢ ¢ RETURN

REM SQUARE 21

I N AR AR AR
R R
R R R
DATA seve 7 aave 7 can
LET R = :+4+ ¢ RETURN
REM SQRUARE 22

R R
N A I A A
T A I I A PP A I AP
DATA cvee 7 e 7 s
LET R = 444 ! RETURN

DI

Cer e
DR R IR

‘
REM SQUARE Z3
.

DR R

DATA +iae ¥
LET R = 4o

.
Ces e
<
.

¥ e

RETURN

1
.
DRI
i
.
i

REM SQUARE 24

B I A R
PO IR I S ST R AP I AP
PO N A A T I I A A IR AP AP ISP
DATA oo v o v o
LET R = «eo¢ ! RETURN
REM SRUARE 29

R NI I I A IR I IR
P I I I I AT ST ER AP I IO
[A A I I I T AT ST I Y
DATA vevs 7 cewe v aue
LET R = ++vs ¢ RETURN

REM ELOCK

education

“ o+ - - . e . . s - - “« o o~ . « . o = . 4 e .

“« o s e

FRINT *THAT WAY 1S ELOCKED!

RETURN
REM GAME IS OVER
FRINTS FRINT?: FRINT

FOR I=1 TO 1000¢ NEXT I
INFUT "WOULD YOU LIKE TO PLAY AGAIN
IF LEFT$(QEy1)="Y" THEN RUN

END

TRY

ANOTHER

Figure 4. Program form

(Y OR

DIRECTION, "

NY "iQ%

28

education

hints or warnings about nearby squares, especially if a death trap or win-
ning square is close. Whatever you want on the screen must be enclosed in
quotation marks. Use more lines if necessary, but watch your numbering.
After the PRINT statement is filled in for a particular square, write in
the four destination codes in the DATA statements. Notice that there are
commas between the numbers, but not at the end of the statement. The
destination codes come from the coding sheet you filled out in Figure 3.
You must tell the computer which square you are in using the LET
=L statement. If the square is a death trap or a winning square, fill
in the blank with 0. For all other cases, use the number of the square.
You must fill in the description, DATA, and square number for each of
the 25 squares. If you need an example, look at the code for Monster’s Gold
on the sheet for lesson 4. The following lines would appear in that program:
1000 REM SQUARE 1
1002 PRINT “YOU ARE NOW IN A LARGE DARK CAVE. SUDDENLY YOU HEAR"
1003 PRINT “WINGS FLAPPING. OH NO! IT'S A HARPY! GET OUT QUICK"
1005 DATA 11,2,6,26
1008 LET R=1: RETURN
1170 REM SQUARE 18 (DEATH TRAP)
1172 PRINT "TOO BAD! YOU'VE ALL JUST FALLEN INTO A HUGE FISSURE
AND DIED"
1175 DATA 26,26,26,26
1179 LET R=0: RETURN

Lesson 6: Entering and Debugging the Program

Time: Three to five sessions
Materials: Computer with cassette tape and recorder
Program form (Figure 4) and pencil

Once you have filled out and checked the program form in Figure 4, you
are ready to type the program into the computer. Follow the usual pro-
cedures for start-up and enter the program. Watch out for typing errors as
you go along. If you do not finish by five minutes before the end of the
period, CSAVE your program on your tape. Be sure to write down the limits
of the program counter and to check by using CLOAD? The next time you
work on the computer, CLOAD the latest version of your program and start
typing from there. Everytime you CSAVE, advance the counter five digits
and use a new strip of tape. Continue this procedure until you have entered
the whole program.

Run the program and use your map and code (Figures 2 and 3) to find and
correct any errors. Make corrections on the program form (Figure 4) as well.
CSAVE the final version on a new tape.

Lesson 7: Follow-up Lesson

Time: One to three sessions, as time permits

29

education

Materials: Computer
Copies of completed maze programs, pencil, and paper

Have students exchange tapes and try to solve each other’s mazes. Ask
them to criticize the programs by finding errors and suggesting how to make
improvements.

Ask the students what they would like to include in the mazes. For in-
stance, a timed input could be used. Graphics and flashing displays could be
inserted. Maybe a counter can be set up so that the player has only a certain
number of times that he can run into a blocked exit. The starting square
could be randomly generated, as could the winning one.

If time is no object, have the students investigate all of the above. If time is
a factor, it would be wise to anticipate student reactions and have the next
step well prepared. That is especially true if graphics are to be considered.

Lesson 8: How the Program Works

Time: One session for those students who are interested

Line 160 N =25 sets the size of the maze at 25 squares.

Line 160 DIM S(N,4) sets up 100 holders for the various destinations.
For example, S(5,2) is the number of the square that you
wind up in after moving east from square 5.

Lines 170-210 The destinations that are listed in the DATA statements are
read into the S array.

Line 220 Sets up the information necessary to put the user into the
starting square.
Line 250 There are 26 possible destinations, counting a blocked exit.

The 26 numbers listed here are the line numbers at which
the square descriptions start.

Line 260 Landing in a death trap or a winning square causes R to be
set to zero and ends the game.

Line 510 If the game is still in progress, the direction to move must be
obtained.

Line 520 LEFT$(Q$,1) considers just the first letter to the left of Q$.

That way, if EAST were entered, Q$ would now be just E.
You can omit this part when using BASICs that do not sup-
port the LEFT$ function.

Lines 530-560 Converts the four compass directions into their respective
codess N=1, E=2,5=3, W=4,

Line 570 The program will not accept a letter other than N,E,S, or W
to indicate direction.

We've had a lot of fun with this package at practically no cost. It can be
used from grade 7 on up and maybe even below grade 7 with proper

30

education

guidance. The activity is well suited for group work when only a few com-
puters are available.

While the lessons call for a TRS-80 Model I 16K Level II, the program
should work with any computer that supports string variables and two
variable numeric arrays.

31

110
120

130
140
150
160
170
180
190
200
210
220
230
240
250

260
500
510
520
530
540
550
560
570
100
100

100
100
101
101

101
101
102
102

102
102
102
103
103

103
103

education

Program Listing. Monster’s Gold

REM * % % % % % % % % % % % % % % & % % & &% % & * k * & * % *
REM * = MONSTER'S GOLD **
REM * * BY ANNE WEISS AND STEVE ARMISTEAD * x
REM * * ST PETER'S HS NEW BRUNSWICK NJ 08901 *
REM % % % % & % * % % % % % % &k % Kk * % & & & & % & % * % * *

REM ** DESCRIPTION AND DIRECTIONS =**
CLS: PRINT "HELLO! YOU ARE ABOUT TO LEAVE THE 20TH CENTURY AND GO"

PRINT "BACK IN TIME TO THE 11TH CENTURY! HOLD TIGHT!!!"

FOR I=1 TO 1000: NEXT I

CLS

FOR I=1 TO 1500: NEXT I

PRINT "YOU MADE IT! WELCOME TO THE 11TH CENTURY."

PRINT "THE YEAR IS 1037. YOU ARE THORCAZ, THE LEADER OF A BAND OF"

PRINT "WARRIORS. YOUR OBJECTIVE IS TO FIND THE CAVE IN WHICH THE"

PRINT "EVIL GIANT, ALTON, HAS HIDDEN HIS TREASURE."

PRINT "WHEN THE QUEST STARTS, THE CAVE YOU ARE IN WILL BE DESCRIBE
D."

PRINT: PRINT "G OO D L UCK - YOU'LL NEED ITHE!I": PRINT

REM INITIALIZE AND READ DATA
LET N=25: DIM S{N,4)
FOR R=1 TO N

FOR D=1 TO 4

READ S(R,D)

NEXT D
NEXT R
LET R=11: LET D=4
il

REM MAIN LOOP OF PROGRAM
ON S(R,D) GOSUB 1000,1010,1020,1030,1040,1050,1060,1070,1080,1090,
1100,1110,1120,1130,1140,1150,1160,1170,1180,1190,1200,1210,1220,
1230,1240,1250

[F R=0 THEN 1260

PRINT: PRINT

INPUT "WHICH WAY WOULD YOU LIKE TO MOVE (N,E,S,W) ";Q%

PRINT: Q$=LEFT$(Q$,1)

IF Q$="N" THEN D=1: GOTO 250

[F Q$="E" THEN D=2: GOTO 250

IF Q$="S" THEN D=3: GOTO 250

{F Q$="W" THEN D=4: GOTO 250

PRINT "NO! NO! PAY ATTENTION NEXT TIME!I": GOTO 310

0 REM SQ. 1

2 PRINT "YOU ARE NOW IN A LARGE, DARK CAVE. SUDDENLY YOU HEAR WING
S FLAPPING. OH NO! IT'S A HARPY! GET OUT QUICK!"

5 DATA 11,2,6,26

9 LET R=1 : RETURN

0 REM SQ. 2

2 PRINT "YOU ARE NOW IN A LARGE, COLD CAVE. THERE ARE ICICLES EVER
Y- WHERE. WATCH OUT! IT'S A HEAT MONGER! RUN BEFORE HE FREE
ZES YOU TO DEATH!™

5 DATA 26,3,1,7

9 LET R=2 : RETURN

0 REM 5Q. 3

2 PRINT "YOU ARE NOW IN A NARROW CAVERN. IT IS VERY CHILLY. SUDDE
NLY"

3 PRINT "YOU HEAR WINGS! GIANT BATS!! GET OUT QUICK!"

5 DATA 4,4,7,2

9 LET R=3 : RETURN

0 REM $Q. 4

2 PRINT “IT IS CALM AND QUIET. YOU AND YOUR GROUP BEGIN TO RELAX.

OUT OF NOWHERE A MAN-EATING ROCK MONSTER APPEARS. HE DEVOURS 0

NE®
3 PRINT "OF YOUR WARRIORS. ESCAPE BEFORE HE ATTACKS AGAIN!"
5 DATA 26,5,9,3

Encyclopedia
yw>l_IJ<=| 3

32

1039
1040
1042

1045
1049
1050
1052

1055
1089
1060
1062

education

LET R=4 : RETURN

REM SQ. 5

PRINT" YOU AND YOUR MEN ENTER A CAVE. SUDDENLY YOU SEE SOMETHING
MOVE BEHIND A ROCK. IT'S A GYNOMORPH! RUN BEFORE SHE KEEPS YOU
AS HER PET FOR THE REST OF YOUR LIFE!®

DATA 4,26,10,3

LET R=5:RETURN

REM SQ. 6

PRINT"YOU ENTER A LARGE, HOT CAVE. THERE IS RED HOT SULFER AND F
IRE BURNING ALL AROUND YOU! GET OUT BEFORE YOU SUFFOCATE OR BUR
N TO DEATH!"

DATA 26,7,11,11

LET R=6:RETURN

REM SQ. 7

PRINT "YOU'VE JUST ENTERED A COOL, MISTY CAVE. EVERYONE SUDDENLY
FEELS

SLEEPY. LEAVE QUICKLY - YOQU'VE JUST ENTERED THE ABODE OF THE
GOD OF SLEEP. HE MAY MAKE YOU SLEEP FOREVER IF YOU DON'T LEAVE

NOW!“
1065
1069
1070
1072

1075
1079
1080
1082

LEAVE
1085
1089
1090
1092

1095
1099
1100
1102

1105
1109
1110
1112

1115
1119
1120
1122

1125
1129
1130
1132

1135
1139
1140
1142

DATA 2,13,12,6

LET R=7: RETURN

REM SQ 8

PRINT "CAN THIS CAVE BE THE ONE YOU'VE BEEN SEARCHING FOR? THERE
ARE PILES OF GOLD EVERYWHERE. ONE OF YOUR MEN, FILLED WITH JOY
. JUMPS INTO THE PILE. OH NO! IT ISN'T GOLD! IT'S A TRIBE OF

GOLD COIN-LEACHES. LEAVE BEFORE THEY ATTACK!"

DATA 3,9,13,7

LET R=8 :RETURN

REM $Q.9

PRINT "THE CAVE YOU'VE JUST ENTERED IS VERY LARGE AND HIGH. THERE
ARE ASHES FROM OLD CAMP FIRES. OUT OF NOWHERE, A CENTAUR RUSHE

S OUT AT YOU. YOU EASILY KILL HIM WITH YOUR MIGHTY SWORD.
BEFORE HIS MATE GETS HER REVENGE!®

DATA 3,5,14,8

LET R=9: RETURN

REM SQ. 10

PRINT" YOU SPOT A BEAUTIFUL MAIDEN RUNNING INTO A CAVE. UPON FOL

LOW- ING HER, YOU DISCOVER SHE'S REALLY A WITCH, AND SHE'S GOT Y

QU IN HER LAIR. RUN BEFORE SHE PUTS A SPELL ON YOU!®

DATA 5,15,15,9

LET R=10: RETURN

REM SQ. 11

PRINT" YOU'VE JUST ENTERED A LARGE, WARM CAVE WITH HUGE SILKEN BA

LLS ALL OVER. THEY BEGIN TO CRACK. OH NO! THEY'RE THE COCCO0

NS OF GIANT MAN-EATING MOTHS! RUN QUICK!®

DATA 6,12,16,1

LET R=11: RETURN

REM SQ. 12

PRINT "YOU AND YOUR MEN ENTER A LARGE, EMPTY CAVE. YOU WALK TO T
HE CENTER. THE GROUND SUDDENLY BEGINS TO RUMBLE. OH NO! IT®
S A GIANT MOLE! ESCAPE WHILE YOU STILL CAN!

DATA 8,13,16,11

LET R=12 : RETURN

REM SG. 13

PRINT “YOU'VE FOUND A CAVE IN WHICH YOU'VE DECIDED TO REST. THERE
IS A POOL NEARBY. ONE OF YOUR MEN GOES TO GET A DRINK. HE'S EA
TEN BY A SHARKMAN. GET OUT BEFORE HE DECIDES HE'S STILL HUNGRY!

DATA 26,14,18,12

LET R=13 : RETURN

REM SQ. 14

PRINT "YOU ENTER A SMALL, DAMP CAVE. THERE IS A BUZZING NOISE £

VERY- WHERE. O NO! IT'S A NEST OF MAN-EATING ANTS{ RUN QUICK

Ly

DATA 10,15,19,13

LET R= 14: RETURN

REM SQ. 15

PRINT " THE CAVE YOU'VE JUST ENTERED IS VERY SMALL AND NARROW. T

HERE ARE SPIDERWEBS ALL OVER. OH NO! A GIANT SPIDER! ESCAPE
QUICKLY!"

Program continued

33

1145
1149
1150
1152

1155
1159
1160
1162

1165
1169
1170
1172

1175
1179
1180
1182

1185
1189
1190
1192

1195
1199
1200
1202

1205
1209
1210
1212

1215
1219
1220
1222

1225
1229
1230
1232

1235
1239
1240
1242

1245
1249
1250
1282

1259
1260
1270
1280
1290
1300
1310

education

DATA 10,10,20,26
LET R=15 : RETURN
REM SQ 16
PRINT " YOU'VE JUST ENTERED A DARK, DAMP CAVE. OH NO! IT'S AN A
§CIENT EGYPTIAN BURIAL TOMB. HERE COMES A MUMMY! GET OUT QUICK!

DATA 11,17,22,26

LET R=16 : RETURN

REM SQ. 17

PRINT "YOU'VE JUST ENTERED A HIGH, ROCKY CAVE. WATCH OUT! IT'S
AN AVALANCE. RUN QUICK!"

DATA 26,18,22,6

LET R=17 : RETURN

REM S 18 (DEATH TRAP 1)

PRINT "TOO BAD! YOU'VE ALL JUST FALLEN INTO A HUGE FISSURE AND D
IED!™

DATA 26,26,26,26

LET R=0: RETURN

REM SQ. 19

PRINT "THE CAVE YOU'VE JUST ENTERED IS VERY SMALL, WARM AND MOIST
. SUDDENLY BLOOD BEGINS TO POUR OUT OF THE WALLS! RUN BEFORE
YOU ARE DROWNED!"

DATA 1,20,24,18

LET R=19 : RETURN
REM $Q. 20 (DEATH TRAP 2)

PRINT "YOU'VE STUMBLED UPON A CAVE INHABITED BY CANNIBALS! OH NO
! THEY'RE EATING YOU! TOO BAD, YOU'RE DEAD NOW!"

DATA 26,26,26,26

LET R=0: RETURN

REM $Q. 21

PRINT " YOU'VE ENTERED A LARGE, HOT, MISTY CAVE. EVERYONE IS SUD
DENLY HAVING BAD FEELINGS ABOUT THE CAVE. NO WONDER WHY! IT'S

THE HOME OF riCZAZ, THE EVIL MAGICIAN. RUN BEFORE HE FINDS YOU
!!l

DATA 16,22,22,26
LET R=21 : RETURN
REM SQ. 22
PRINT" YOU'VE ENTERED A LARGE, HIGH CAVE. YOU SPY ANOTHER GROUP.
THERE IS A FIGHT AND YOU'RE OVERPOWERED. ESCAPE BEFORE YOU
ARE KILLED!"
DATA 17,23,23,21
LET R= 22 : RETURN
REM $Q. 23
PRINT "YOU'VE ENTERED A LARGE, WARM, MOIST CAVE. THERE ARE PLANT
S ALL OVER. YOU GO TO EAT THEM, BUT THEY EAT YOU FIRST! RUN IF
YOU STILL CAN!"
DATA 18,26,25,22
LET R=23 : RETURN
REM SQ. 24
PRINT "CONGRATULATIONS! YOU'VE FOUND THE CAVE WITH THE TREASURE
S!"
DATA 26,26,26,26
LET R=0: RETURN
REM $Q. 25
PRINT "YOU'VE ENTERED A LARGE CAVE WITH TREASURES ALL OVER. IT'S
THE ABODE OF THE GOD OF THE UNDERWORLD. ESCAPE BEFORE HE KEEPS
YOU FOR GOOD!®
DATA 20,1,21,26
LET R=25 : RETURN
REM BLOCK
PRINT “OH NO! THE WAY IS BLOCKED! GO ANOTHER WAY BEFORE IT'S T0O
LATE!"
RETURN
REM GAME IS OVER
PRINT: PRINT: PRINT
FOR I=1 TO 1000: NEXT I
INPUT "WOULD YOU LIKE TO PLAY AGAIN (Y OR N) “;Q$
IF LEFT$(Q$,1)="Y" THEN RUN
END

34

EDUCATION

Getting Your Bearings

by Gary V. Small

n the world of computer games and simulations, one of the basic prob-

lems encountered by the programmer is finding the bearing of a known
point, relative to another point, referenced to a 360 degree compass.
Navigation and radar computer systems are dedicated to similar problems in
ships, aircraft, and ground radar installations. Finding a bearing between
two points is a relatively simple exercise in trigonometry. Due to the use of a
compass as a reference system, and the limitations of inverse trig functions,
some care must be used in setting up the problem for use on a computer
system.

As a first step, we will define an X-Y world with two points in it, as shown
in Figure 1. In an actual application, this might represent an airplane and
an airport, two airplanes, or most any other kind of object. For the purposes
of calculating a bearing, you are looking at a frozen moment of time, so any
movement of the objects does not come into play. You simply have two
points, with absolute positions given by their X- and Y- coordinates.

You must now differentiate between the two points and label them A and
B. You must select one of these points as the reference point for calculating
the bearing. With point A as the reference point, the other point now
becomes the “target” point to which the bearing is calculated. If point A was
a ship trying to reach point B, it would assume a compass course equal to the
bearing to point B.

N
o
NW i NE
3150 i 450
AN | v
AN s
AN y | /
\\) | //°a
N | (X2, %31
| ’
b7
Ny
W 2709 mmm s e o o 5 ——}K—\ ~~~~~~~~ 90° €
LR
i
X X
/7 | N
N\,
’ } N
yd I N
% | N
'/ | \\
225° | 135°
sw | SE
180°
y s
Figure 1

education

Look at Figure 1 again and notice the compass reference points. In work-
ing this problem, you are actually dealing with two coordinate systems.
There is the absolute X-Y world, and a compass-referenced world which is
always centered on the reference point. The concepts of bearing and range
are relative to the two points and are constantly centered on the reference
point. Notice in Figure 1 that the angle increases in a clockwise direction,
and that zero degrees is vertically oriented. This is the opposite of the usual
angular orientation used in working with points in an X-Y system.

Figure 2 shows the triangular construct used to find the range and bearing
to point B with respect to point A. The length of side XX is given by the for-
mula XX = (X; - X,); the length of YY is given by the formula YY = (Y, - Y;).
Note the order of the subtraction, as this order will give the appropriate sign
for XX and YY to be used later. The long side of the triangle, which is also
the range between the two points, is given by the formula R = (XX2 + YY?)112.

o
|
|
!
I
|
|
|
!
|

Bixz ¥z)

______________ —g0°
Alxy ¥

Figure 2

As shown in the figure, the angle you are interested in is 6 (theta). This is
the bearing to the target point from point A. Since you have constructed a
right triangle, the sine of 6 is defined as the opposite side/hypotenuse, or
XX/R. The cosine is defined as the adjacent side/hypotenuse, or YY/R. Note
that you have effectively reversed the roles of the X- and Y-axes, when com-
pared to standard X-Y referenced angular constructs. This is done to accom-
modate the compass reference which has been superimposed on the X-Y
world.

Now that you know the sine and cosine, you should be able to look up
the corresponding angle in a table of inverse trig functions. You can look
up an angle within the range of 0-90 degrees, but after that, difficulties
arise. Look at Figure 3. This shows the sign of the trig function in the
various portions of the circle. The determination of the bearing requires

36

education

that you know which quadrant you are in. If you look a little further, you
find that the TRS-80 has only one inverse trig function, the arctangent
(BASIC keyword ATN). You must use more complex techniques to solve
for the bearing on a computer.

(~x,+y) {+x, +y)
SINE = (+] SINE = (+)
COSINE = (-} COSINE = (+)
TANGENT = (~) TANGENT = (+)
X X
(-x, -y) (+x, -y)
SINE = (-) SINE = (-)
COSINE = (-) COSINE = (+)
TANGENT = (+) TANGENT = (-)
y
Figure 3

The tangent of an angle is defined as the opposite side/adjacent side, or
XX/YY. The signs of XX and YY determine which quadrant the angle is in,
so define the function TT as the absolute value of (XX/YY), and thus con-
fine it to the 0-90 degree range. Note that if YY is zero, a division by zero
error occurs. You must flag any condition in which YY is zero. This occurs
only if the target point has the same Y-coordinate as the reference point,
which means the target is directly east or west of the reference point, at a
bearing of 90 or 270 degrees. If XX is positive the bearing is 90 degrees, if
XX is negative the bearing is 270 degrees.

The Bearings program, shown in the Program Listing, returns the range
and bearing when you enter the X- and Y-coordinates of a reference point
and a target point.

The program first uses the coordinate values of the two points to
calculate the values XX, YY, and R, the range. To eliminate any division
by zero problems, the program then checks for XX and YY values that
would occur at the 0, 90, 180, and 270 degree points. If the bearing is not
one of these points, then a value is calculated for TT, the tangent, and for
C, a degrees/radians conversion factor. Lines 100-130 generate the bear-
ing within the four different quadrants. The signs of XX and YY are used to
determine the quadrant. The arctangent value, which is in the 0-90 degree
range, is added to an offset value (in the third quadrant) or subtracted
from an offset value (second and fourth quadrants). The subtraction is
necessary in those quadrants due to the nature of the arctangent function,
which increases in the wrong direction in those quadrants. You now have a
working bearings routine. You can convert this program to a subroutine by

37

education

deleting the INPUT and PRINT statements, replacing the END statement
with a RETURN, and providing the X- and Y-coordinates of the two points
from the main program.

38

education

10 REM X1,Y1 IS REFERENCE POINT , X2,Y2 IS TARGET , R IS RANGE , AN IS
BEARING

20 INPUT"INPUT X1,Y1;X1,Y1 : INPUT"INPUT X2,Y2";X2,Y2

30 XX=(X2-X1) : YV=(¥2-Y1) : R=SQR(XX[2 + YY[2)

40 IF YY=0 AND XX>=0 THEN AN=90 : GOTO 140

50 IF YY=0 AND XX<O THEN AN=270 : GOTO 140

60 IF XX=0 AND YY>=0 THEN AN=0 : GOTO 140

70 IF XX=0 AND YY<O THEN AN=180 : GOTO 140

80 TT=ABS(XX)/ABS(YY)

90 C={2+3.1415926)/360

100 IF YY>0 AND XX>O THEN AN=ATN(TT)/C

110 IF YY<O AND XX>0 THEN AN=180-ATN(TT)/C:REM IN 2ND QUADRANT, ATN

VALUE STARTS AT 90 DEG AND DECREASES

120 IF YY<O AND XX<O THEN AN=180+ATN(TT)/C

130 IF YY>0 AND XX<O THEN AN=360-ATN(TT)/C :REM IN 4TH QUADRANT, ATN
VALUE STARTS AT 90 DEG AND DECREASES

140 PRINT “RANGE =";R,"BEARING=";AN

150 END

39

GAMES

Left/Right for the Color Computer
Munch

41

GAMES

Left/Right for the Color Computer

by Robert Toscani

An article in a recent issue of a computer magazine described a game
called Left/Right. A box of some color appears on the screen along with
one colored bar on each side. Depending on the background screen color,
the player presses the appropriate joystick button to indicate which bar
matches the box’s color.

Keeping in mind the details of the game, I wrote a program for the Color
Computer. (See Program Listing 1.) With a little work, I came up with a
working program. But that old demon, the desire for improvement, sneaked
in, and the program changed as features were altered and added. I stayed
with commands that would run on a 4K machine, but by the time I had
something I was satisfied with, it needed over 5000 bytes to run. To run the
program on a 4K machine, enter Program Listing 2.

The Program

Line 10 is for the winners list, deleted in the 4K program. Users with 4K
should skip to line 450. Lines 20-150 need no explanation. Lines 160-190 set
up an input from the joystick buttons. To use keyboard inputs, set up an IN-
KEYS$ loop. These lines could have been combined, and I suggest you do s0.
The program is written in this form for clarity.

Lines 200-440 set up a demonstration of what the game looks like and,
again, input from the buttons. Line 450 sets the starting score at zero. Lines
460-560 establish how the game will be played.

Line 600 begins the game and makes the screen either black or white.
Lines 640-650 decide the left and right bar colors, with line 660 making sure
they are not the same. Some of the colors are similar, making deciding dif-
ficult.

Lines 670-690 determine if the left or right bar will be the same as the
box. Lines 700-730 SET the bars, while lines 740-790 pick the box’s location
and SET it. Lines 800-830 print the timer and the score, subtract one unit
from the time, and end the game if time runs out.

Lines 840-920 provide joystick input and tell the conditions for a right or
wrong response. It is set up to be used when the screen is black or white, even
though the buttons are reversed.

When the screen is black, press the button corresponding with the match-
ing bar. If the left bar matches the box, press the left button. If the screen is
white, do the opposite. In the example, with a white screen, you would press
the right button.

43

games

If you do not have a joystick, write an INKEY$ loop for lines 850, 870,
890, 910 and delete the other lines. Lines 940-950 send the box jumping. I
originally tried using the RESET statement; it worked for the black screen
but did not work properly with the white. It reset the box to black instead of
white. I had to use SET and give the color code to get it to work.

Line 960 sets up the loop to keep the clock running. Lines 970-1000 set the
screen white, pick the bar colors, and make sure they are not the same or
white. Lines 1010-1030 reverse the bar and box color relationship and set up
for the black screen, permitting lines 840-920 to be used for both black and
white. Lines 1050-1150 are the right and wrong responses. Line 1080 ends
the game if you achieved your score. Lines 1160-1250 are the RESET lines
to make the box jump around.

Line 1310 determines if you are eligible for the winners list. You are eligi-
ble for the winners list if: You have specified a time limit of 300 or less, you
have a score of 50 or more, you have specified that wrong answers count
against you, and that the box moves around. You can change this if you
wish,

Anyone making it to the winner is rewarded with fireworks going off
and a chorus of Stars and Stripes Forever. The graphics are poor and
should be deleted by 4K users. I used one sound per line; however, using
multiple lines will save a little memory. Those of you with Extended
BASIC should use the PLAY option and really shorten the program. It will
alsosound better. You can easily transpose from one code to the other using
the textbooks. One caution—the textbook is wrong when it says the com-
puter automatically uses octave 2 if not specified. It actually uses octave 3.
The end lines are self explanatory and optional.

44

18 G=1
28 CLS

3¢ PRINT
40 PRINT
5@ PRINT
PRINT
PRINT
PRINT
PRINT

240
258
260
270
280
298
300
310
320
338
340
358
368
37@
380
390
400
410
420
430
440
450
460
470
480
490
500
518
528
530
540
550
560
578
580
590
608
616
620
630
640
650
660

games

Program Listing 1. Left/Right

"A COLORED BOX WILL APPEAR ON ®
"THE SCREEN, SOMEWHERE. TWO BARS"
"WILL BE ON THE BOTTOM. YOU MUST"
"DETERMINE IF THE LEFT OR RIGHT"
"BAR COLOR MATCHS THE BOX COLOR"
"AND PRESS THE CORRESPONDING"
"BUTTON, DO THIS IF THE SCREEN"

PRINT "IS BLACK. IF IT IS WHITE, YOU"
PRINT "MUST PRESS THE OTHER BUTTON."
PRINT "TO SEE WHAT THIS WOULD LOOK"
PRINT "LIKE, PRESS THE LEFT HAND "
PRINT "BUTTON. IF YOU WANT TO GO ON TO"
PRINT "THE GAME, PRESS THE RIGHT ONE."

A=PEEK (65280)

IF A=125 OR A=253 THEN 200
IF A=126 OR A=254 THEN 450

GOTO 160

FOR M=1 TO 308:NEXT M

C=1

CLS (@)
SET(30,15,1)
SET(30,16,1)
SET(31,15,1)
SET(31,16,1)
FOR B=12 TO 20
SET(B,38,1)
SET(B+32,30,3)
NEXT B

IF C=2 THEN 370

PRINT "HERE YOU WOULD PRESS THE LEFT"

PRINT "BUTTON."
C=C+1

FOR M=1 TO 1008:NEXT M

CLS(5)
GOTO 228

PRINT "BUT HERE, YOU WOULD PRESS THE"
PRINT "RIGHT, IF YOU'RE READY TO GO,"
PRINT "PRESS THE RIGHT BUTTON. IF NOT"
PRINT "PRESS THE LEFT."

A=PEEK (65280)

INPUT "TIME? TO START, TRY 1600";1(G)

IF A=125 OR A=253 THEN 20

IF A=126 OR A=254 THEN 450

GOTO 410

T(G) =0

CLS

FOR M=1 TO 300:NEXT M

B=I(G)

PRINT "ENTER A GOAL SCORE. IF YOU"

INPUT "DON'T WANT ONE, PRESS @";F
PRINT "WHAT ABOUT HAVING THE BOX MOVE"
INPUT "AROUND? Y/N";G$

PRINT"IF YOU HAVE A GOAL SCORE, DO"
PRINT "YOU WANT WRONG ANSWERS TO COUNT*®
INPUT "AGAINST YOU? Y/N";I$

INPUT "WHAT'S YOUR NAME";K$(G)

PRINT "OK, "K${G)" GET SET, WE ARE JUST ABOUT TO BEGIN."
FOR M=1 TO 188@:NEXT M

N==RND (2)

IF N=1 THEN 630
IF N=2 THEN 970
CLS(8)

J=RND(8)
L=RND (8)

IF J=L THEN 648

Program continued

45

games

670 S=RND(2)
686 IF S=1 THEN K=J
696 IF S=2 THEN K=L
788 FOR B=12 TO 20
718 SET(B,38,J)

720 SET(B+29,38,L)
730 NEAT B

748 P=RND(58)

758 Q=RND(27)

768 SET(P,Q,K)

770 SET(P+1,0,K)

788 SET(P,Q+1,K)

798 SET{P+1,0+1,K)
800 PRINT @ 480 ,E;
818 PRINT € 5@6,T(G);
820 E=E-1

830 IF E=0 THEN 1338
848 A=PEEK(65280)

856 IF S=1 AND A=253 THEN 1658
868 IF S=1 AND A~=125 THEN 1650
878 IF S=]1 AND A=254 THEN 11190
880 IF S=1 AND A=126 THEN 11180
898 IF S=2 AND A=253 THEN 1110
900 IF S=2 AND A=125 THEN 1119
916 IF S=2 AND A=254 THEN 1058
92¢ IF S=2 AND A=126 THEN 1050

936 SOUND 138,1
946 IF GS="Y" AND N=1 THEN 1168
95¢ IF G$="Y" AND N=2 THEN 1218
968 GOTO 808

978 CLS5(5)

980 J=RND(8)

998 L=RND(8)

1888 IF J=5 OR L=5 OR J=L THEN 980
1816 S=RND(2)

1820 IF S=1 THEN K=L

1830 IF S=2 THEN K=J

1849 GOTO 786

1858 PRINT @ 493,"RIGHT";

1868 T(G)=T(G) +1

1878 IF E=@ THEN 1330

1880 IF T(G)=F AND F>@ THEN 1268
1898 FOR M=1 TO 588:NEXT M

1168 GOTO 680

1118 PRINT @ 493,"WRONG";

1128 IF I$="Y" THEN T(G)=T(G)~1
1138 IF E=@ THEN 1330

1146 FOR M=l TO 3P8:NEXT M

1159 GOTO 680

116¢ RESET(P,Q)

1178 RESET(P+1,Q)

1186 RESET(P,Q+1)

1196 RESET{P+1,0+1)

1206 GOTO 748

121¢ SET(P,Q,5)

1228 SET(P+1,Q,5)

123¢ SET(P,Q+1,5)

1248 SET(P+1,0+1,5)

125¢ GOTO 748

1268 FOR M=1 TO 3P@:NEXTM

1276 CLS

1288 PRINT"YOU WIN,"KS$(G)"1®
1290 PRINT "YOUR SCORE IS "T(G)
1306 FOR M=1 TO 1P@@:NEXT M
1319 IF I(G)<=308 AND T(G)=>58 AND G$="Y" AND I$="Y" THEN 1568
1328 GOTO 1468

1339 FOR M=1 TO 3P@:NEXTM

1348 CLS

1358 PRINT "TIME'S UP, "K$(G)
1368 IF F>@ THEN 1418

46

1370
1389
1398
1468
1410
1428
1438
1449
1460
1470
1480
1499
1588
1510
1520
1538
1540
1550
1560
1578
1580
1590
1600
1610
1620
1630
1649
1650
1660
1670
1680
169¢@
1700
171@
1728
1730
1740
1750
1760
1770
1780
1798
1800
1810
18280
1830
1848
1858
1860
1879
1880
1898
1960
191e
1929
193¢0
1949
1950
1960
1978
1980
1990
2000
2010
20290
2038
2040
2059
20690
20870

games

PRINT "YOUR SCORE IS "T(G)
PRINT "NOT TOO BAD,"

FOR M=1 TO 1l0@@:NEXT M
GOTO 1460

PRINT "SORRY, YOU LOSE.”

PRINT "YOUR SCORE WAS ONLY "T(G)"AND YOUR GOAL WAS "F"."

PRINT "BETTER LUCK NEXT TIME, "K$(G)

FOR M=1 TO 1860:NEXTM
CLS
PRINT "DO YOU WANT TO GO AGAIN?"

PRINT "IF YOU WANT TO START FROM THE"
PRINT "BEGINNING, PRESS 1. IF YOU WANT"
PRINT "TO GO BACK TO THE MENU, PRESS"
PRINT®2, IF YOU JUST WANT TO END IT,"

INPUT "PRESS 3.";%
IF Z=1 THEN 20

IF Z=2 THEN 458

IF Z=3 THEN END
CLS

PRINT "SINCE YOU HAVE DONE SO WELL,"
PRINT "WE ARE PUTTING YOUR NAME,TIME"
PRINT "AND SCORE IN OUR CHANPION LIST."

FOR M=1 TO 58@:NEXT M

CLS

FOR D=1 TO G

PRINT K$(D) I(D) T(D)
NEXT D

G=G+1

IF G=13 THEN 1690

INPUT "DO YOU WANT TO END THE RUN Y/N";Y$

IF Y$="N" THEN 1468

CLS: IF G=13 THEN 171¢

IF Y$="Y" THEN 1720

PRINT "OUT OF SPACE, PEOPLE."

PRINT "OK, THEN THAT'S THE END OF THIS"
PRINT "RUN, BUT WE HAVE A LITTLE PRIZE"

PRINT "FOR DOING SO WELL."
FOR M=l TO 1800:NEXT M
GOSUB 2600
SOUND 165,8
SOUND 165,8
SOUND 153,4
SOUND 147,4
SOUND 147,8
GOSUB 2770
GOSUB 2868
SOUND 147,22
H=4:GOSUB 2799
GOSUB 2868
SOUND 147,8
H=5:GOSUB 2798
H=6 : GOSUB 2799
GOSUB 2868
SOUND 165,8
SOUND 147,6
SOUND 165,2
SOUND 153,16
SOUND 133,12
H=8:GOSUB 2798
H=10:GOSUB 2798
SOUND 133,4
SOUND 133,8
GOSUB 2898
SOUND 133,8
GOSUB 2899
SOUND 153,22
H=12:GOSUB 2798
SOUND 143,4
SOUND 133,4
SOUND147,4

Program continued

47

games

2080 SOUND 165,12
2696 SOUND 176,12
21B@ SOUND 176,4
2119 SOUND 133,22
2126 H=15:GOSUB 2790
213¢ SOUND 165,8
2148 SOUND 165,8
2156 SOUND 153,4
2160 SOUND 147,4
2178 SOUND 147,8
2180 H=208:GOSUB 2798
2198 GOSUB 2868
2208 SOUND 147,22
2218 H=21:GOSUB 2799
2228 GOSUB 2860
2230 SOUND 147,8
2240 GOSUB 2868
2250 SOUND 153,4
2268 SOUND 147,4
2278 SOUND 133,6
2288 SOUND 168,2
2298 SOUND 133,16
2368 SOUND 117,12
2310 GOSUB 2668
2320 SOUND 117.,4
2338 SOUND 117,8
2340 SOUND 108,4
235¢ SOUND 117,4
2368 SOUND 148,8
2370 GOSUB 2778
2380 SOUND 133,4
2398 SOUND 117,4
2468 SOUND 189,28
2416 SOUND 117,4
2420 SOUND 133,4
2430 SOUND 147,4
2440 SOUND 165,2
2450 H=4:GOSUB 2799
2466 SOUND 117,4
2470 SOUND 133,4
2480 SOUND 147,4
2498 SOUND 165,2
2588 H=6:GOSUB 2790
2510 SOUND 69,4
2520 SOUND 89,4
2530 SOUND 147,4
2548 SOUND 133,16
2558 SOUND 117,4
25680 FOR H=7 TO 22
2578 GOSUB 2798
2580 NEXT H

259¢ GOTO 2929
2608 CLS(8)

2618 FOR D=1 TO 23
262@ SET(8,23~D,1)
2638 SET(7,24-D,1)
2640 SET(8,24-D,1)
2650 SET(9,24-D,1)
2668 SET(7,25-D,1)
2678 SET(8,25-D,1)
2688 SET(9,25-D,1)
2690 SET(7,26~D,4)
2788 SET(8,26-~D,4)
2718 SET(9,26-D,4)
2728 SET(8,27~D,4)
2738 CLs(#)

2740 NEXT D

2758 CLS(RND(5))
2760 RETURN

2779 CLS(@)

48

games

2788 H=2

2798 V=RND(5) :D=RND(5) :U=RND(5)

2809 SET(D+U,U,V)

2819 SET(H+D+U,U,V)

2828 SET(H+D+U,D+U,V)

2838 SET(H+D+U+V,D+U,V)

2848 SET(B4D+U+V,D+U+H,V)

2850 RETURN

2860 SOUND 148,4

2876 SOUND 147,4

2889 RETURN

2894 SOUND 125,4

29449 SOUND 133,4

2919 RETURN

2920 FOR M=1 TO 1608:NEXT M

2938 CLS

294¢ PRINT "PRETTY BAD,HUH?"

2956 PRINT "WELL, WE'RE TIRED TOO. IT TAKES"
2960 PRINT "A LOT OF RUNNING AROUND INSIDE"
2978 PRINT "THIS LITTLE COMPUTER TO KEEP"
2988 PRINT "IT GOING., SO TAKE A BREAXK, "
2990 PRINT "STRETCH YOUR LIMBS AND LET US"
3066 PRINT "RELAX A LITTLE. BYE NOW."

230
240
250
260
270
288
290
300
310
320
338
340
358
360
370
389
398
400
410

Program Listing 2. 4K version

T=0
CLS
FORM=1TO30¢ : NEXTM
INPUT"TIME? TO START, TRY 1#08";E
PRINT"ENTER A GOAL SCORE. IF You"
INPUT"DON'T WANT ONE, PRESS 87;F
PRINT"WHAT ABOUT HAVING THE BOX MOVE"
INPUT"AROUND? Y/N";GS
PRINT"IF YOU HAVE A GOAL SCORE, DO"
PRINT"YOU WANT WRONG ANSWERS TO COUNT"
INPUT"AGAINST YOU? Y/N";I$
INPUT"WHAT'S YOUR NAME";KS$

PRINT"0K, "K$" GET SET, WE ARE JUST ABOUT TO BEGIN.”
FORM=1T018@8: NEXTM

N=RND (2)

IFN=1THEN170ELSEIFN=2THEN410

CLS (8)

J=RND{8) : L=RND(8)

IF J=L THEN188

S=RND(2)

IFS=1THENK=J

IFS=2THENK=L

FORB=12T020
SET(B,38,J) : SET(B+29,30,L) : NEXTB

P=RND (58) :Q=RND(27)

SET(P,Q,K) :SET(P+1,Q,K) : SET(P,0Q+1,K) : SET(P+1,Q+1 ,K)
PRINT@480 ,E; : PRINTQ@586,T;
E=E~1:IFE=0THEN618

A=PEEK(65284)

IFS=1ANDA=253THEN480
IFS=1ANDA=125THEN48#
IFS=1ANDA=254THEN52¢

IFS=1ANDA=126 THENS520
1FS=2ANDA=253THENS528
IFS=2ANDA=125THEN528

IFS=2ANDA=254THEN 480
IFS=2ANDA=126THEN48D

SOUND139,1

IFGS$="Y" ANDN=1THENS6@ELSRIF GS="Y"ANDN=2THEN 578
GOTO278

CLS(5) Program continued

49

games

420 J=RND(8) :L=RND(8)

438 IF J=5 OR L=5 OR J=L THEN 428

448 S=RND(2)

458 IPS=1THENK=L

468 IFS=2THENK=J

470 GOTO230

488 PRINT@493,"RIGHT";

49¢ T=T+1:IFE=0THEN610

588 IF T=F AND F>@ THEN 586

518 FORM=1TO380:NEXTM:GOT0150

528 PRINT@493,"WRONG";

538 IFI$="Y"THENT=T~1

54¢ IFE=@THEN610

550 FORM=1TO300:NEXTM:GOTO158

566 RESET(P,Q) :RESET(P+1,Q) :RESET(P,Q+1) : RESET (P+1,Q+1) :GOT0258
578 SET(P,Q,5) :SET(P+1,Q,5) :SET(P,Q+1,5) : SET(P+1,0+1,5) :GOT0258
58@¢ FORM=1TO3#0:NEXTM:CLS

59§ PRINT"YOU WIN, "K$"I":PRINT"YOUR SCORE IS "T
688 FORM=1TOl880:NEXTM:GOTO780

618 FORM=1TO0308:NEXTM:CLS

628 PRINT"TIME'S UP, "K$

636 IFF>PTHEN660

648 PRINT"YOUR SCORE IS "T:PRINT"NOT TOO BAD."
658 FORM=1T01000:NEXTM:GOTO7688

660 PRINT"SORRY, YOU LOSE."

678 PRINT"YOUR SCORE WAS ONLY "T"AND YOUR GOAL WAS "F®.,"
680 PRINT"BETTER LUCK NEXT TIME, "K$

698 FORM=1T0O106@:NEXTM

7606 CLS

718 PRINT"DO YOU WANT TO GO AGAIN,":PRINT®IF YOU DO, PRESS l. IF YOU J
UST": PRINT"WANT TO END PRESS ANY KEY."

728 INPUT 2

738 IFZ=1THENL@

740 PRINT"OK, THAT'S IT EXCEPT FOR THIS" :PRINT"LITTLE REWARD."
758 FORM=1TO1000:NEXTM

760 SOUND165,8:SOUND165,8:SOUND153,4

776 SOUND147,4:SOUND147,8:GOSUB100d

780 SOUND147,22:GOSUBl1@@@:SOUND147,8

796 GOSUBl@#G:SOUND165,8:S0UND147,6

888 SOUND165,2:SOUND153,16:SOUND133,12

818 SOUND133,4:S0UND133,8:G0OSUB1818

828 SOUND133,8:GOSUBLA18

83¢ SOUND153,22:S0UND143,4:SOUND133,4

840 SOUND147,4:S0UND165,12:SOUND176,12

858 SOUND176,4:SOUND133,22:S0UND165,8

868 SOUND165,8:SOUND153,4

878 SOUND147,4:SOUND147,8:GOSUB1R80

880 SOUND147,22:GOSUB18A@:SOUND147,8

896 GOSUB1@#B:SOUND153,4:S0UND147,4

988 SOUND133,6:S0UND188,2:SOUND133,16

918 SOUND117,12:S0OUND117,4:SOUND117,8

926 SOUND1#8,4:SOUND117,4:S0UND146,8

938 SOUND133,4:SOUND117,4:S0UND18Y,20

940 SOUND117,4:SOUND133,4

958 SOUND147,4:S0UND165,2:SOUND117,4

968 SOUND133,4:S0UND147,4:50UND165,2

976 SOUND69,4:S0UNDB9,4:SOUND147,4

988 SOUND133,16:SOUND117,4

990 END

1098 SOUND140 ,4:SOUND147,4:RETURN

1818 SOUND125,4:SOUND133,4:RETURN

50

GAMES

Munch

by John Corbani

ou have probably paid your dues at the local Pac-Man™ game and

wondered if a similar game could run on your TRS-80. You can buy a
machine-language version that is amazingly close. This variation 1 call
Munch can teach you some interesting things about BASIC and test your
strategy as well as your reflexes.

Munch (see Program Listing) is a chase played in a maze. You, Big Star,
are chased through the maze by your son, Little Star. The maze is filled with
vitamins that help you run faster and give you game points. The object of the
game is to eat all of the vitamins and then hide in the middle of the maze and
watch Little Star run around trying to find you. The four keyboard arrow
keys control your direction of travel. If you are out in the maze and you don’t
move, you have from one to 15 seconds before the little guy catches you.
Your vitamin count is displayed in the lower left corner of the screen, and
the highest score of the session is displayed in the lower right corner.

The program defines the maze in a unique way. The displayed maze con-
sists of full white character cells (CHR$(191)). The vitamins are asterisks. A
few periods are thrown in for flavor. Table 1 shows the program variables.
The whole thing is held in string array D$(15). The usual technique for
generating strings containing graphics characters is to use data statements to
hold the numerie codes. This is tedious to program and difficult to modify.
There is a better way. Type the pattern on the screen using convenient
alphanumeric characters and then write a line of code that replaces selected
characters with the desired graphics ones. The program gets double duty out
of the translation routine by using it as a timing loop for the game introduc-
tion. The total code required to define the screen is about one fourth of that
required by numeric data statements, and your BASIC editor can change
the maze in nothing flat, Note that the number of characters is limited to 60
per line in this program so that the image is identical on the screen and the
printer. You can get full 64-character lines if you let the printer run past 64
characters per line. Remember that the last line printed on the screen cannot
exceed 63 characters or the screen scrolls.

Little Star is represented by a plus sign. Big Star is one of six two-character
strings, depending on whether he is standing still (F$), moving left (L$),
moving right (R$), moving up (U$), moving down (D$), or temporarily not
there (E$). If Big Star is standing still, he blinks. If he is moving, his mouth is
munching all of the time in the hope that some vitamins will be there.

51

games

Numeric Variables
A = Temporary loop variable
B Temporary loop variable
HS High score of session
I Keyboard input variable
LA = Little Star address
LP Little Star position
LS = Little Star step
M = Blink counter
P = Big Star position
Pl = Next character
P2 = Next character + 1

[

i

SC = Game score
T = Temporary Big Star address
TG = Toggle flag

X

I

Big Star’s X position

String Variables
D$(15) = Maze array

D$ = Mouth down

E$ = Empty Big Star
F$ = Full Big Star

1$ = Temporary string
IN$ = Temporary string
L$ = Mouth left

P$ = Mouth string

R$ = Mouth right

U$ = Mouthup
Z% = Dummy string

Table 1. Program variables

Little Star runs like mad in straight lines, looking neither left nor right un-
til he runs into a wall. Then he jumps up, looks around to see where Big Star
is, and heads down the nearest path, usually heading in Big Star’s direction.
The process repeats until Little Star finds Big Star. Big Star’s position is con-
trolled by the four arrow keys. The PEEK function determines which key or
keys you press. The program checks to see what lies in the direction you
specify. If CHR$(191) is there, Big Star cannot move but he tries to bite the
wall. If a blank space or an asterisk is there, movement is allowed. Any
vitamins eaten are totaled. If the two stars run into each other, a yell of
delight occurs, and the program asks if you would like to run again. Press
ENTER to continue. If you get all of the vitamins, press ENTER to start
over. There are 200 vitamins in the maze, and a score of 25 is typical for a
beginner.

52

games

The reaction time of the program is not at all typical of most BASIC
games. A walk through the code should explain how the speed was obtained.
First, all variables are set to integer, string space is cleared, and the screen
array is defined. Then, string variables are defined, and the array characters
are changed as required. The string functions are not the fastest way to per-
form the translation, but they are straightforward, and the countdown
properly sets up new players. Big Star’s characters are defined, and all im-
portant game variables are initialized. Subsequent games begin at line 120.
The program then prints the screen from the D$ array.

The program then drops through the Big Star blink routine and jumps to
see how Little Star is doing. Little Star is erased, and the program looks
ahead one step. If the next character position is not 191, the program checks
to see if Big Star has been caught. If he has, the program prints the
GOTCHA message, checks for a new high score, and prompts for a new
game. If the way is clear, position and address counters are updated, Little
Star is POKEd into position, and the program looks for keystrokes.

If Little Star is against a wall (191), the code at 230 figures which of two
directions heads towards Big Star and sets LS (Little Step) as required. Right
angle turns are tried first, and line 240 makes sure that things don’t get stuck
when a dead end is encountered. The program loops back to 220, and Little
Star moves off in the new direction.

Line 160 is the keyboard scanning section. The four arrow keys and the
ENTER key are read by setting I equal to PEEK (14400). If I is 0, then no key
is down. The program goes through the blink routine, lets Little Star move,
and looks at the keys again. If I equals 1, then the ENTER key is down, and
the game player wants out. Head for the end of the program. If I is greater
than 1, the program figures that an arrow key is down and sets T (Tem-
porary) equal to P (Big Star’s position). The code strips each key in turn, sets
the proper character for Big Star, looks ahead one step, and updates P and
SC (the score) as appropriate. Big Star is then erased at his old position (T),
the program checks the toggle flag (TG), prints either a cross or an open
mouth, and complements the toggle flag. Control falls down, checks on Lit-
tle Star, and loops back to the keyboard scan. If you find that Little Star is
too fast, loop back to 160 at the end of 210. Little Star then moves half as
fast. I apologize for the condensed and virtually unreadable code in the key
parser, but that is the price you have to pay for speed. Adding the line feed
and the spaces after each line helps readability a little, but the slower speed
is noticeable. Take them out when you get better at the game.

By now you should have a good understanding of the program flow and
can modify it with confidence. You can change the characters or the step
size. Save your program before you run it, whatever you do. Any program
that POKEs into memory at high speed can eat itself up if there is a small er-
ror in coding.

53

games

Program Listing
Encyclopedia
10" MUNCH Loader”
TAPE #15 -1, 5-45; -2, 5-45 "M"
8Y JOHN CORBANI

1/19/82
20 éLEAR 5000: DEFINT A-Z: DIM D$(16)
30 D$(0)=
N9929727227207222227222 2022272222207 10222222222 202002 200
:D§(1)=
"??*siz********? MUNCH ?*************?"
:03(2)=
U *¥777227702227027777 *22777222270% 22722077220 2702227227 ¥
40 D$(3)=

"??**************************??77*7"

99 %2977272227227222092222272727 *122227222272227277 %9777 *7*

:08(5)=
"??**********??????????*??************?"
50 D$(6)=
H99972277222272277077 *222777722..27 *PP270722272222227207 A

:08(7)=
"??**********?? ??************?"

:D$(8)=
VPP ORVIVT KTTTVIINT A7 27 *277722202222722227727 2"
60 D${9)=
U997 277977 AP2RPIPVT KV, L2VPVVVVVPY Kk kK Kk k k ok kK ok kY

:0$(10)=
NP ¥P79777 KPPRVIVIT K X K K ok x x k X792727722790722797722 *7

D$(11)=
W9 779727 *P2227777 *P2P7277VP7927 KPP X K ok k ok k ok k AV
70 D§(12)=
HPP XPPPPPY K K Ak K K K Kk kK K Kk Kk % k ok *PPPPPPIPRIIIYY APV

:08(13)=
U K k% ok X2777229077277707227022222722222792 K Kk k¥ ok wpl

D$(14)=
NPPPIIITIT K K K Kk Kk ok kX %k x k ok Kk Kk X x7777777227777"
80 D$(15)=
"SCORE 27772222222282222222202272292222222 2222 7HIGH

90 CLS: PRINT @ 90, "MUNCH":
FOR A=0 TO 15: PRINT @ 0, CHR$(30) 15-A;: IN$="":
FOR B=1 TO 61: 1$=MID$(D$(A),B,1):
IF 1$="7" THEN 1$=CHR§(191)
100 IN$=IN$+I$: NEXT: D$(A)=INS:
IF A=1 PRINT @ 219, "BY"
PRINT TAB(22) "JOHN CORBANI": ELSE
IF A=4 PRINT @ 398,
“THE LITTLE STAR IS AFTER YOU": ELSE
IF A=9 PRINT @ 532, "GET READY TO RUN": ELSE
IF A=14 PRINT @ 666, "NOW "
105 NEXT
110 U$=CHR$ (165)+CHRS (154)
D$=CHRS (150)+CHR$ (169):
L$=CHRS (179)+CHR$ (153):
R$=CHR$ {166) +CHRS (179) :
F$=CHRS (174)+CHR$ {157):

o

120 T=0: P=926: X=30: P$=F$: SC=0: LA=15360+544: LP=544: LS=2
130 CLS: FOR A=0 TO 14: PRINT D$(A%: NEXT: PRINT D$(A) HS;
140 M=M+1: IF M=1 THEN PRINT @ P,F§; ELSE
IF M>3 THEN PRINT @ P,E$;: M=0
150 GOTO 220
160 1=PEEK(14400): IF I=0 THEN 140ELSE
IF I=1 THEN GOTQ 270ELSE T=P
170 IF IANDBTHENP$=U$:P1=PEEK(15296+P):P2=PEEK(15297+P):
IFP1<191ANDP2<191 THENP=P~64 : IFP1=420RP2=4 2THENSC=SC+1
180 IFIAND16THENP$=0$:P1=PEEK(15424+P) :P2=PEEK(15425+P):

54

19

(=3

200
210
220

23

o

240
250
260

270
280

games

[FP1<191ANDP2<191THENP=P+64: IFP1=420RP2=42THENSC=SC+]
TFTAND32THENP$=L$:P1=PEEK(15359+P):
[FP1<191THENX=X~1:P=P-1:1FP1=42THENSC=SC+1
IFIANDG4THENP$=R$:P1=PEEK(15362+P):
IFP1C191THENX=X+1:P=P+] : IFP1=42THENSC=5C+1

PRINT @ 965,SC;: PRINT @ T,E$;:

[F TG THEN TG=0: PRINT @ P,F$;: ELSE TG=1: PRINT @ P,P$;
POKE LA,32: L3=PEEK(LA+LS):

[F L3<191 THEN IF ABS{LP-P)<2 THEN GOTO 260 ELSE
LP=LP+LS: LA=LA+LS: POKE LA,43: GOTO 160

IF ABS(LS)<3 THEN IF LP>PTHEN LS=-64 ELSE

LS=64 ELSE IF LP-INT(LP/64)*64>X THEN LS=-2 ELSE LS=2

IF PEEK(LA+LS)=191 THEN LS=-LS

GOTO 220

FOR A=1 TO 15: PRINT @ P-2, "GOTCHA";: FOR B=1 TO 60: NEXT:
PRINT @ P-2, " “5: FOR B=1 TO 60: NEXT: NEXT

[F SC>HS THEN HS=SC

PRINT @ P-2, "AGAIN";: INPUT Z$: GOTO 120

55

GRAPHICS

Dynamic Graphics with Pool Ball
Recreating Graphics
Super Fast Graphics in BASIC

57

GRAPHICS

Dynamic Graphics with Pool Ball

by David L. Kahn

hen I demonstrate my TRS-80 to my friends, there are few things

that are more impressive than graphics. Unfortunately, many
graphics programs require that the user do a lot of work, either playing a
game or specifying parameters. To fill what I saw as a void, I wrote Pool
Ball, a short (24 lines, 662 bytes) program that produces interesting
graphics, allowing owner and guests to sit back and watch.

Pool Ball is a dynamic simulation of a pool ball rolling around a pool
table. Watching it run is more interesting than seeing the result. As the ball
rolls, it leaves a white track behind itself, producing intricate patterns. By
varying the six input parameters, you can produce different patterns, Figure
1 shows a sample screen. All screen pictures are black on white, instead of
the white on black that appears on the screen.

Program Design

I designed Pool Ball to be simple and short. No user interaction is
necessary after you specify the input parameters. It is dynamic and
reasonably fast,

Figure 1. A sample pattern produced by the Pool Ball program, produced using the default values
of all parameters. This snapshot was taken about 40 seconds after the start.

59

graphics

To meet these objectives, I chose a number of simplifying design alter-
natives. The rolling ball would leave a trail of individual graphics dots. The
ball would always travel at a 45 degree angle to the edges, although this is
horizontally compressed on the screen. The user view of the pool table is
from directly above.

)

Figure 2. The four possible ball directions. The ball is moved by adding either +1 o1 — 1toboth
the x- and y-coordinates. A + 1 produces motion to the right (x) or down (y). A — 1 moves to the

left (x) or up (y).
Tt

s -

XOR MODE
Figure 3. The two graphics modes. Normally the program runs in the OR mode, drawing a path
behind itself. When the XOR (exclusive OR) mode is selected, the ball complements whatever
pattern it crosses.

MAKES

OR MODE
(defaul £

The design I chose requires eight parameters. The dimensions of the table
and the position of the ball are described using Cartesian (x,y) coordinates,
where x increases to the right, and y increases downwards on the screen.
Figure 2 describes the coordinate system and the four possible ball direc-
tions. As the ball moves, it leaves its trail in one of two graphics modes, as
shown in Figure 3. The OR mode always leaves a white trail, while the XOR
(exclusive OR) mode complements the pattern as it crosses. When the ball
reaches an edge, it can do one of two things, as indicated by the edge mode.
The two edge modes, Non-Stick and Stick, are illustrated in Figure 4. Two

60

graphics

parameters are required to indicate the current direction of the ball, as a
Cartesian vector (x,y). By setting the x and y components of this vector equal
to either +1 or — 1, adding the vector to the current position produces mo-
tion along a 45 degree angle.

MAKES

STICK

Figure 4. The two edge modes. Normally the program runs with an immediate edge reflection.
When the Stick mode is selected, the ball sticks at the edge for one cell.

The Program

When you run the program, it asks for the values of each of the first six
parameters. The direction vector is initialized to (+ 1, + 1). Fixing the initial
direction causes no lack in flexibility. Any image can still be produced,
because of the symmetry of the table. After you answer the questions, Pool
Ball draws the pictures.

Refer to Figures 5 and 6 for the description of variables and the statement
map. There is one variable for each of the eight parameters. The placement
of the input subroutine after the main loop was largely the result of evolu-
tion. The program originally had fixed parameters. 1 replaced the
parameter initialization in line 10 with the GOSUB that is now there and
tacked the input statements onto the end.

Variable Possible Values Name Description
DX either +1or ~1 delta X added to X on every iteration
DY either +1lor -1 deltaY added to Y on every iteration
X 0<=X<= MX X current x-coordinate of pool ball
Y 0<=Y<=MY Y current y-coordinate of pool ball
MX 0<= MX<= 127 max X number of columns —1
MY 0<= MY<= 127 max Y number of rows —1
MO 0 or 1 (non-zero) maode 0=O0R, 1 (non-zero) = XOR
ST 0 or 1 (non-zero) stick 0 = don’t stick, 1 (non-zero) = stick

Figure 5. Variables used in the Pool Ball program

I used several tricks of Level II BASIC in writing Pool Ball. The first is the
input default specification in lines 100, 130, 160, 180, and 190. I set the
variable to the default value before executing the input statement. If you

61

graphics

press ENTER without entering a number, the default value is retained. The
syntax allows the default and input to fit easily on one line.

In lines 40, 50, 70, and 80 I use nested IF statements. The second IF is part
of the ELSE clause from the first IF. This allows the handling of each
dimension (x,y) and each direction (+ 1, — 1) in only one line.

Lines Description
5-10 Initialization
20-90 Main loop
20 Leave track
30-50 Adjust column
60-80 Adjust row
90 Go to start of loop
100-200 Input subroutines
100-120 Width of table (rows)
130-150 Length of table (columns)
160-170 Initial ball position
180 Graphics mode
190 Stickiness
200 Return to program

Figure 6. Statement map of the Pool Ball program

The Results

Run the program and press ENTER in answer to each of the five ques-
tions. You see a track of white start at the top left corner and bounce off the
bottom edge, and then the top edge, then the right edge, and so on. Press
SHIFT@ at any time to freeze the image; press any key to continue. The
pattern changes for several minutes, leaving a checkerboard pattern. This
is the default pattern. The design in Figure 1 occurs about 40 seconds into
the run.

By varying the input parameters, you can generate many interesting
patterns. While most of the following examples use relatively small table
sizes, I encourage you to experiment with all sizes.

Example 1

Figure 7 shows several pictures of a simple run using the default modes
on a smaller table than Figure 1. This table is 12 by 32, or 1/16 of the
largest (default) size of 48 by 128. Where ENTER appears in these figures,
merely press the ENTER key.

The input parameters are described at the top of Figure 7. Immediately
below that, a picture of the screen is shown just after the start. After pass-
ing through the next two stages as shown, the program reaches the screen

62

graphics

shown at the bottom of the figure. Once this pattern is reached, it no
longer changes.

HOW MANY ROWS? 12

HOW MANY COLUMNS? 32

INITIAL POSITION? <ENTER>

ENTER 1 FOR XOR? <ENTER>

ENTER 1 TO STICK AT EDGE? <ENTER>

Figure 7. Several snapshots of a run using default graphics and edge modes

For any table size and starting position (the first three questions), if the
defaults are chosen for the last two questions, the final pattern is stable and
never becomes more solid than a checkerboard. This is because the ball
always rolls as a bishop in chess moves, never leaving its own color. If you
imagine a large chess board with a bishop on it, moving diagonally and
bouncing off the edges, you will get the picture.

Note that not all sizes produce a solid checkerboard. Figure 8 shows the
final result for a 17 by 25 table using three different starting positions and
the default modes. Though the checkerboard is not full, once these patterns
are reached, the changes stop. Try other positions on the top row as starting
positions. Note the transitions from (0,1) to (0,2) and so on to (0,4). As (0,8)
is approached, the pattern approaches the original image but is reversed
(left to right). What happens when starting positions in other rows are used?
(1,1) and (2,2) all produce the same image as (0,0). That is because they are

63

graphics

on the same pattern. Any of the patterns in Figure 8 can be produced, start-
ing at any position on the pattern.

HOW MANY ROWS? 17

HOW MANY COLUMNS? 25

INITIAL POSITION? <ENTER>

ENTER 1 FOR XOR? <ENTER>

ENTER 1 TO STICK AT EDGE? <ENTER>

HOW MANY ROWS? 17

HOW MANY COLUMNS? 25

INITIAL POSITION? 0, 1

ENTER 1 FOR XOR? <ENTER>

ENTER 1 TO STICK AT EDGE? <ENTER>

HOW MANY ROWS? 17

HOW MANY COLUMNS? 25

INITIAL POSITION? 0, 4

ENTER 1 FOR XOR? <ENTER>

ENTER 1 TO STICK AT EDGE? <ENTER>

Figure 8. Final patterns using default modes from different initial positions

64

graphics

These two properties always hold where the ENTER key is pressed in
response to the last two questions (XOR and STICK). The ball never leaves
its color on the imaginary board, and any pattern can be produced from any
point on it. This can be proven mathematically, but the proof is beyond the
scope of this article. These patterns always become stable.

% M TAA AAAAA
I’lll | .I III..:':IIIIIII
I'If ll " IIIIIIII.ll.I

.. ins (FRIRRE nee
T "-.5' B': .,..,..,.::.'

l. IIIII .5.'...... IIIIIIIIIIIIIIII'
g
.I] I I 'I I |
i
2
. 1
I I l |
'| Rl -' L :
SLL (RN D EEEEREEERERRERD
|
.I HOW MANY ROWS? 12
.. HOW MANY COLUMNS? 32
'I INITIAL POSITION? <ENTER>
ENTER 1 FOR XOR? 1
ENTER 1 TO STICK AT EDGE? <ENTER>
E]
Figure 9. Several snapshots of a run using XOR graphics mode
Example 2

What happens when XOR mode is used? Figure 9 shows several snapshots
of the patterns produced using the same parameters as in Figure 7, except
that the XOR mode is used. The pattern starts off the same, but as soon as
the ball crosses its own path, it erases the intersection. Very soon, pattern A
in Figure 9 is produced. Patterns B, C, and D occur in sequence during the

65

graphics

first 18 seconds. The border shown in pattern D is produced because each
of the internal cells is crossed twice, once along each diagonal, while each of
the border cells is touched only once. You can see this while watching the
pattern evolve,

After another 18 seconds, most of the screen has been erased, and the
pattern starts again, as in pattern E of Figure 9. The only difference is the
block in the bottom right corner. When a ball bounces into a corner and
back out, it touches most of the cells twice (once each way), but touches the
corner only once. Allow the pattern to run for another 36 seconds, and the
pattern will start again at the beginning, without the stray block.

Because the ball continues to move like a bishop, it stays on its own color.
Since each cell is toggled on at each passing, the pattern never stabilizes. In-
stead, every pattern repeats exactly after some period of time. The edge and
corner properties typically cause a number of near repeats to occur also.

HOW MANY ROWSP 12

HOW MANY COLUMNS? 32
INITIAL POSITION? <ENTER>
ENTER 1 FOR XOR? <ENTER>
ENTER 1 TO STICK AT EDGE? 1

Figure 10. Several snapshots of a run using the Stick edge mode

Example 3

What happens when the Stick mode is used? Figure 10 shows three snap-
shots of the pattern produced using the same table size as in Figures 7 and 9,
but with the Stick mode. After passing through the first two images, the pat-
tern stabilizes on the final image. There are several interesting
characteristics of this mode. Note that the ball continues to move like a

66

graphics

bishop, except that it changes color every time it hits an edge. The color re-
mains unchanged when the ball hits a corner. The ball always crosses its
own path using the opposite color, because the ball bounces off the edge an
odd number of times. Can you see why this happens? Compare the bottom
snapshot of Figure 10 with the bottom snapshot of Figure 8.

HOW MANY ROWS? 12

HOW MANY COLUMNS? 32
INITIAL POSITION? 0, 1
ENTER 1 FOR XOR? <ENTER>
ENTER 1 TO STICK AT EDGE? 1

HOW MANY ROWS? 12

HOW MANY COLUMNS? 32
INITIAL POSITION? O, 2
ENTER 1 FOR XOR?r <ENTER>
ENTER 1 TO STICK AT EDGE? 1

Figure 11. Intermediate and final patterns using the Stick mode from different initial positions

When you change the starting position from the default to (0,1) and (0,2),
the intermediate and final results are shown in Figure 11. Unlike Figure 8 of
Example 1, these patterns are not as obviously related, and even share com-

mon points. The patterns always become stable, since no cells are ever
turned off.

67

graphics

Example 4

By selecting both the XOR and Stick modes, you can create more patterns.
The patterns oscillate, because the image is complemented, and cover both
colors of the imaginary checkerboard. It may or may not fill the entire
board, depending on the board size and starting position. If a 12 by 32 board
is used, the results are similar to Figure 10 of Example 3. When the ball hits
the upper right-hand corner, it sticks, then bounces back and starts erasing
itself, all the way back to the top snapshot, and then starts again.

By reducing the size of the table to 11 by 31, you produce the results
shown in Figure 12. After the image of the first snapshot and the second, the
entire board fills up. Then it starts erasing itself, and returns to the initial
image. This pattern continues to oscillate. Notice that the top two images
are not quite color complements of each other.

HOW MANY ROWS? 11

HOW MANY COLUMNS? 31
INITIAL POSITION? <ENTER>
ENTER 1 FOR XOR? 1

ENTER 1 TO STICK AT EDGE? 1

Figure 12. Several snapshots of a run using both the XOR and STICK modes

As the preceding examples show, it is easy to generate a variety of in-
teresting graphics patterns using a very simple program. As you experiment,
many of the more predictable characteristics of the patterns become ob-
vious. As the examples illustrate, the XOR mode causes the patterns to
oscillate, while the Stick mode causes a color shift along the edges. Varying
the starting position of an uninteresting pattern often produces a very in-
teresting one.

I recommend experimenting with larger tables such as those in Figures 1
and 13. The richness of the variations on boards of these sizes is much
greater.

68

graphics

For those of you with printers, it is a simple matter to insert a trap in the
program (mine is between lines 20 and 30) to a subroutine that scans the
screen and prints it. Those who have TRS-80 or dot graphics can use them,
while asterisks work well for those who dom’t.

HOW MANY ROWS? 42

HOW MANY COLUMNS? <ENTER>
INITIAL POSITION? <ENTER>
ENTER ! FOR XOR? 1

ENTER 1 TO STICK AT EDGE? 1

Figure 13. Sample image using both the XOR and STICK modes on a large table

69

graphics

Program Listing. Pool Ball

2 REM #%%% POOL BALL *w¥x
5 DEFINT A-Z

10 CLS:GOSUB 100:CLS:DX=1:DY=1

20 IF MO AND POINT(X,Y) RESET(X,Y) ELSE SET(X,Y)

30 IF DX = 1 THEN 50

40 IF X > O THEN X=X-1 ELSE DX=1: IF NOT ST THEN X=1

45 GOTO 60

50 IF X ¢ MX THEN X=X+1 ELSE DX=-1: If NOT ST THEN X=MX-1
60 IF DY = 1 THEN 80

70 IF Y > O THEN Y=Y-1 ELSE DY=1: IF NOT ST THEN Y=1

75 GOTO 90

80 IF Y ¢ MY THEN Y=Y+1 ELSE OY=-1: IF NOT ST THEN Y=MY-1
90 GOTO 20

100 MY=48:INPUT "HOW MANY ROWS (1-48)";My

110 IF MY < 1 OR MY > 48 GOTO 100

120 MY = MY-1

130 MX=128:INPUT "HOW MANY COLUMNS (1-128)";MX
140 IF MX < 1 OR MX > 128 GOTO 130

150 MX = MX-1

160 X=0:Y=0:INPUT "INITIAL POSITION {(ROMW,COL)";Y,X

170 IF Y <D OR Y > MY OR X < 0 OR X > MX GOTO 160

180 MO=0: INPUT "ENTER 1 FOR XOR";MO

190 ST=0: INPUT "1 TO STICK AT EDGE";ST:IF ST < 0 THEN ST=-1
200 RETURN

70

GRAPHICS

Recreating Graphics

by Steve Carr

he idea of writing a TRS-80 program whose output was a BASIC pro-
gram intrigued me. I wanted this computer-produced program to run
correctly and also have practical applications.

I settled on the idea of having the computer speed up my graphics and
even write graphics programs from scratch. Using the SET(X,Y) statement
can be a painfully slow way to produce a picture. A much faster method is
concatenating the picture into a string array by using CHR$ and the ASCII
codes for graphics. You can then arrange these strings properly on the screen
by using the PRINT @ command. Drawing your picture one block at a time
and then looking up the ASCII code for each block is tedious work. Since the
computer can do such work quickly, the job seemed perfect for a TRS-80.

Program Listing 1 includes a routine in lines 80-440 to help you draw
your picture. You begin with a clear screen, then construct your drawing by
maneuvering a flashing pixel about the screen. You direct the flashing light
by pressing the four arrow keys. To move the pixel without leaving a line of
lighted blocks, hold down the space bar while you press the arrow.

To add characters from the keyboard to your drawing, press the D key.
This transfers control to line 310. Since this transfer is brought about by an
INKEY$ (line 100), you may have to press the D key more than once. When
the transfer to line 310 has been made, a flashing block appears in the upper
left-hand corner of the screen. This block is also controlled by the arrows. To
insert a character on the screen, hit the appropriate key. You can move the
flashing block over previously lit areas without changing them. To return to
line 100 (drawing the graphics), press the CLEAR key. No, this does not
erase your drawing. You must engage this graphics part of the routine before
proceeding in order to save your drawing.

When the drawing is complete, press the A key. This transfers control to
line 20030. Once again, you may have to press the key several times. Now
the graphics recreating process is at work, scanning the screen and preparing
to print out the completed program which, when typed in, reproduces your
drawing quickly and accurately.

The drawing in Figure 1 is an example of what this program does. After
the drawing was completed on the screen, the graphics recreating process
did its work and printed out the program in Program Listing 2.

To convert a drawing created by SET and RESET to one that is produced
by string graphics, it is necessary to merge the two programs—-program 1

71

graphics

which produces the graphics, and program 2, lines 2000020850 in Program
Listing 1.

CURSE YOU,
GET AND RESET!

Figure 1. Picture created by Program Listing 2

The portion of the program which recreates the graphics is in three sec-
tions. The first section, contained in lines 20020-20210, scans the video one
line at a time and determines if each line has at least one block lit. If so, the
number of characters to be printed, and the position of the first character
are both recorded. Lines 20660-20850 contain the program to be printed on
paper. Lines 20260-20650 determine and print out the actual data bits that
compose your drawing.

Section 1

The video scan is composed of two nested loops. On the TRS-80, the video
memory begins at memory address 15360, and each screen line consists of 64
bytes. Thus, in line 20050, the index X is the position in memory of the first
block on the line. This loop moves the screen scan vertically. The horizontal
movement is provided by the index Z in the inside loop (line 20080). By
PEEKing at memory location X +Z, you can examine every block on the
screen, one at a time. Table 1 lists the program variables.

Now that the scan is working, you must determine what you are looking
at, and if you should do something about it. What the scan finds is simply
the ASCII representation of whatever graphics character occupies the cur-
rent block on the screen. A blank block is represented by ASCII code 32. If
these blanks occur at the beginning of a line, they are counted, otherwise

72

graphics

they are ignored. The variable FIRST starts off equal to X (the beginning of
the line). For each leading blank found, FIRST increases by 1. When the
first non-blank character is found, FIRST becomes the PRINT @ position
for the characters on that line. These PRINT @ positions are stored in array
PA(COUNT). The length of the line (the number of characters between the
first non-blank and the last non-blank character) is stored in the array
LNGTH(COUNT).

Section 1: Lines 50-290

P Determined by PEEKing at 14590. This tells which arrow keys are pressed.
C The number contained by P, only in a reduced form.
XY Graphic coordinates.
Z ASCII code for screen block that is replaced by flashing cursor.
B ASCII code for INKEYed character.
GP Graphics position; that is, current location of flashing cursor.
Section 2: Lines 20000-20610
COUNT Number of lines on the screen that have a block lit up.
LN The line number used in the printout.
X Control for horizontal screen scan.
Z Control for vertical screen scan.
FLAG Set to 0 when first non-blank character is found on a line.
LAST Position of last non-blank character on a line.
FIRST Position of first non-blank character on a line.
LNGTH() Number of non-blank characters on each line.
PA() PRINT @ position for each line.
LIN Index to keep track of screen line.
NUM Counter keeping track of how many data points have been printed.
KOUNT Number of DATA points per line of output.
LO ASCII code for scanned block.
DUP Number of times a character has been duplicated.
Table 1. Program variables
Section 2

NUM is converted to a character, and the characters for each line are con-
catenated into the array A$(X) (line 110 of the output). If NUM is negative
(the signal for a repeated character), then the absolute value of the next
ASCII number (stored in CHAR) is converted to characters and con-
catenated. When NUM equals 999, the computer begins concatenating the
next line. All that remains then is the printing of the strings at their respec-
tive PRINT@ positions.

73

graphics

Section 3

The second scan determines and prints out the ASCII code for your
graphics. To shorten the output, the program scans ahead to see if a certain
character is repeated several times. If so, the number of times it appears is
printed out as a negative number, followed by the actual ASCII number.
When the scan reaches the end of a line, the flag 999 is printed, and the com-
puter begins again on the next line. For easier readability, only 13 data
points are printed on each line of output. The subroutines in lines
20550—20650 convert each data point to a character string and lengthen or
shorten the string so that each string is three bytes long. This causes the
numbers to be printed in columns, which makes for easier reading.

74

graphics

Program Listing 1. Graphics recreating program

10 CLEAR 2000

20 DIM PA(16),LNGTH(16)

30 CLS:GP=15360

40 PRINT:PRINT TAB(23)"GRAPHICS RECREATOR®:PRINT:PRINT

50 PRINT"DO YOU NEED INSTRUCTIONS?";

60 Z$=INKEY$:IF Z$="" THEN 60

70 IF 2$="Y" THEN PRINT" YES":FOR Z=1 TO 50:NEXT:GOSUB 21000:ELSEPRINT
" NO": FOR Z=1 TO 50:NEXT

80 'BEGIN SKETCH

90 CLS

100 IF INKEY$="D" THEN 310 ELSE IF INKEY$="A" THEN 20030

110 P=PEEK(14590): IF P<3 OR P=24 OR P=96 THEN 100 ELSE IF P=128 THEN §
ET(X,Y}:GOTO 190

120 ' DETERMINE WHICH KEYS ARE BEING PRESSED

130 IF P>128 THEN C=INT(SQR(P-127)) ELSE C=INT(SQR(P+1))

140 IF (<3 THEN 100

150 IF P=72 OR P=200 THEN GOSUB 280 ELSE ON C-2 GOSUB 220,230,240,250,
260,270,290

160 IF YO THEN Y=0 ELSE IF Y>47 THEN Y=47

170 IF X<O THEN X=0 ELSE IF X>127 THEN X=127

180 'IF SPACE BAR ISN'T PRESSED, LIGHT UP BLOCK; ELSE FLASH 1T ON AND
OFF.

190 IF P<B1 THEN SET(X,Y) ELSE SET(X,Y):FOR J=1 TO 7:NEXT:RESET(X,Y)

200 GOTO 100

210 ' CHANGE 'X* AND 'Y' COORDINATES

220 Y=Y-1:RETURN

230 Y=Y+1:RETURN
240 X=X-1:RETURN
250 Y=Y-1:X=X-1:RETURN
260 Y=Y+1:X=X-1:RETURN
270 X=X+1:RETURN
280 Y=Y~1:X=X+1:RETURN

290 Y=Y+1:X=X+1:RETURN
300 ' ADD CHARACTERS TO DRAWING

310 Z=PEEK(GP):POKE GP,143:POKE GP,Z

320 IN$=INKEY$:1F IN$="" THEN 310

330 B=ASC(IN$)

340 ' CLEAR KEY PRESSED?

350 IF B=31 THEN 100

360 ' PRINT INPUTTED CHARACTER ON SCREEN

370 IF 8>31 AND B<91 THEN POKE GP,B:GP=GP+1:GOTO 430

380 ' MOVE CURSOR

390 IF B=9 THEN GP=GP+1:GOTO 430

400 IF B=8 THEN GP=GP-1:G0TO 430

410 IF B=91 THEN IF GP-64>15360 THEN GP=GP-64

420 IF B=10 THEN IF GP+64<16383 THEN GP=GP+64

430 IF GP<15360 THEN GP=15360 ELSE IF GP>16383 THEN GP=16383
440 GOTO 310

20000

20010 *

20020 * BEGIN GRAPHIC RECREATOR

20030 COUNT=0:LN=1000

20040 * X CONTROLS HORIZONTAL MOVEMENT OF THE SCAN

20050 FOR X=15360 TO 16320 STEP 64

20060 FLAG=1:LAST=X:FIRST=X

20070 ' 7 CONTROLS VERTICAL MOVEMENT OF THE SCAN

20080 FOR Z = 0 T0 63

20090 ' IF SCANNED CHARACTER IS NOT A LEADING BLANK, GOTO 20090
20100130 IF {{PEEK(X+Z)>32) AND (PEEK(X+Z)<>128) OR (FLAG=0)) GOTO 20

20110 FIRST=F IRST+1

20120 GOTO 20150

20130 FLAG=0

20140 IF PEEK(X+Z) <> 32 AND PEEK{X+Z)<>128 THEN LAST=X+Z

20150 NEXT Z)
20160 * IF LINE IS BLANK, SKIP TO 20160 Program continued

75

graphics

20170 IF LAST=X GOTO 20210

20180 COUNT=COUNT+1
20150 LNGTH(COUNT) =LAST-FIRST+1
20200 PA{COUNT)=FIRST

20210 NEXT X

20220 * PRINT ON PAPER THE HEART OF COMPUTER GENERATED PROGRAM

20230 GOSUB 20670

20240 °

20250

20260 ' BEGIN TO PRINT ON PAPER THE ASCII DATA

20270 FOR LIN = 1 TO COUNT

20280 NUM=0:KOUNT=0

20290 ' PRINT OUT THE 'PRINT @' POSITION

20300 PA=PA(LIN)-15360:GOSUB 20590

20310 LPRINT LN;" DATA ";PA$;"

'PRINT @ POSITION®

20320 LN=LN+10

20330 LPRINT LN;" DATA "3

20340 ' ALL DATA FOR CURRENT VIDEQ LINE BEEN PRINTED OUT?

20350 IF NUM = LNGTH{LIN) GOTO 20440

20360 IF KOUNT > 12 THEN LPRINT:LN=LN+10:LPRINT LN;" DATA “;:KOUN
T=0

20370 IF KOUNT<>O THEN LPRINT", 3

20380 LO = PEEK(PA(LIN)+NuM)

20390 ' IS SCANNED BLOCK AND THE ONE BESIDE IT THE SAME?

20400 IF PEEK(PA(LIN)+NUM+1)=LO GOSUB 20470 ELSE GOSUB 20550:LPRI
NT LO$;

20410 NUM=NUM+ 1

20420 KOUNT=KOUNT+1

20430 GOTO 20350

20440 LPRINT", 999":LN=LN+10:NEXT LIN

20450 STOP

20460 * BEGIN ROUTINE TO COUNT UP REPEATED CHARACTERS

20470 DUP=-1

20480 IF PEEK(PA(LIN)+NUM)<>PEEK(PA{LIN)+NUM+1) OR NUM=LNGHT(LIN) THEN
LO=PEEK(PA(LIN)+NUM):GOSUB 20570: GOSUB 20550:LPRINT BUP$;", ";L
0% 3 :KOUNT=KOUNT+1 :RETURN

20490 DUP=DUP-1

20500 NUM=NUM+1

20510 GOTO 20480

20520

20530

20540 '

20550 'CONVERT LO TO LO$

20560 X=L0:GOSUB 20620:L0$=X$:RETURN

20570 *CONVERT DUP TO DUP$

20580 X=DUP:GOSUB 20620 DUP$=X$:RETURN

20590 'CONVERT P PAS

20600 X=PA: GOSUB 20620 PA$=X$:RETURN

20610

20620 ' MAKE ALL DATA NUMBERS INTO A THREE CHARACTER STRING

20630 X$=STR$(X):LX=LEN(X$

20640 IF LX>3 THEN X$= RIGHT$(X$ 3) ELSE IF LX<3 THEN X$=" “+X$

20650 RETU

20660 * PART OF PROGRAM TO BE PRINTED ON PAPER

20670 LPRINT* 50 CLS"

20680 LPRINT" 60 CLEAR 1000"

20690 LPRINT" 70 DIM PA(16),A${16)"

20700 LPRINTY 80 FOR X = 1 TO “;COUNT

20710 LPRINT" 90 READ PA(X), NUM"

20720 LPRINT" 100 IF NUM = 999 THEN GOTO 140"

20730 LPRINT" 110 IF NUM < 0 GOSUB 500 ELSE A${X)=A$(X)+CHRS(NU
M)II

20740 LPRINT" 120 READ NUM"

20750 LPRINT" 130 GOTO 100"

20760 LPRINT" 140 NEXT X"

20770 LPRINT" 150 FOR X = 1 TO “;COUNT
20780 LPRINT" 160 PRINT @ PA(X),A$(X)"
20790 LPRINT" 170 NEXT X"

20800 LPRINT" 180 END"

76

graphics

20810 LPRINT" 500 NUM=ABS{NUM)"

20820 LPRINT" 510 READ CHAR"

20830 LPRINT" 520 A${X)=A$(X)+STRINGS(NUM,CHAR)"

20840 LPRINT" 530 RETURN®

20850 RETURN

21000 CLS:PRINT:PRINT" TO CONSTRUCT YOUR DRAWING, MANEUVER THE FLA
SHING PIXEL"

21010 PRINT"ABOUT THE SCREEN BY PRESSING THE ARROWS ON THE KEYBOARD"

21020 PRINT"IN THE DESIRED DIRECTION. TO MOVE DIAGONALLY, PRESS A"

21030 PRINT"HORIZONTAL ARROM AND THE APPROPRIATE VERTICAL ARROW AT THE

21040 PRINT"SAME TIME. TO LOCATE YOUR PRESENT POSITION, HOLD THE SPAC
£

21050 PRINT"BAR DOWN BRIEFLY. THIS WILL CAUSE THE PIXEL TO FLASH."
21060 PRINT"TO MOVE THE PIXEL WITHOUT LIGHTING A BLOCK, KEEP THE SPACE

21070 PRINT"BAR DEPRESSED ALONG WITH THE ARROWS."

21080 PRINT:PRINT" TO ADD CHARACTERS TO YOUR GRAPHICS, PRESS THE '
D' KEY."

21090 PRINT"YOU MAY HAVE TO PRESS THE 'D' KEY SEVERAL TIMES BEFORE THE

21100 PRINT"COMPUTER TRANSFERS CONTROL TO THE CHARACTER INSERTION ROUT
INE."

21110 GOSUB 21260

21120 PRINT:PRINT"WHEN THE TRANSFER HAS BEEN MADE, A FLASHING BLOCK WI
LL APPEAR"

21130 PRINT"IN THE UPPER LEFT-HAND CORNER. ONCE AGAIN, MOVE THE BLOCK

21140 PRINT"BY PRESSING THE ARROWS. TO ADD A CHARACTER, SIMPLY HIT"
21150 PRINT"THE DESIRED KEY. YOU MAY MOVE THE BLOCK OVER PREVIOUSLY"
21160 PRINT“DRAWN GRAPHICS WITHOUT CHANGING THEM. TO RETURN TO THE"
21170 PRINT"FLASHING PIXEL, PRESS THE 'CLEAR' KEY."

21180 PRINT:PRINT" TO START THE GRAPHICS RECREATOR, PRESS THE 'A'

21190 PRINT"ONCE AGAIN, IT MAY BE NECESSARY TO PRESS IT SEVERAL TIMES.

21200 PRINT"AT THIS POINT, YOUR PRINTER SHOULD BE ON, BECAUSE THE"
21210 PRINT“COMPUTER WILL SOON BEGIN TO PRINT OUT IT'S PROGRAM."
21220 PRINT" N O T E -- YOU MUST BE IN THE GRAPHICS MODE RATHER THAN"
21230 PRINT"THE CHARACTER INSERTION BEFORE YOU ATTEMPT TO START THE"
21240 PRINT"GRAPHICS RECREATOR.":GOSUB 21260

21250 RETURN

21260 PRINT:PRINT"HIT ANY KEY TO CONTINUE";

21270 Z$=INKEY$:IF 2$="" THEN 21270

21280 CLS:RETURN

Program Listing 2

50 CLS
60 CLEAR 1000

70 DIM PA(16),A$(16)

80 FOR X=1 TO 11

90 READ PA(X),NUM

100 IF NUM =999 THEN GOTO 140

110 IF NUM < O THEN GOSUB 500 ELSE A$(X)=A$(X)+CHRS (NUM)
120 READ NUM

130 GOTO 100

140 NEXT X

150 FOR X=1 TO 11

160 PRINT @ PA(X),A$(X)

170 NEXT X

180 END

500 NUM=ABS (NUM)

510 READ CHAR

520 A$(X)=A$(X)+STRINGS (NUM,CHAR)
530 RETURN

1000 DATA 73

Program continued

77

graphics

1010 DATA 160 , 156 , 135, -2, 131, 191 , 188, 144, -3, 32
128, -2, 176

1020 DATA -2, 140 , 172 , 176 , 999

1030 DATA 135

1040 DATA 176 , 142 , 139, 176 , -4 , 32,176, 151, ~5, 131

1050 DATA -2, 131 , 140, -2, 188,176 , -3, 32, 128 , 160

1060 DATA 175 , 180 , 999
1070 DATA 197
1080 DATA 152 , 131, -4, 32,131, 169 , 176 , 190, 149, -2

1090 PATA -4 , 128 , -4, 32,160, 152, -2, 143, 131, -3
1100 DATA -3, 32, 67, 8 , 8, 8, 69, 32, 8, 79

1110 DATA 139 , 173 , 148 , 999

1120 DATA 260

1130 DATA 168 , 129 , 32,128, -2, 176 , -4, 128,170, -2
128 , 32, 160

1140 DATA 134, -8 ,131,129, -3, 32,160, 176 , 156 , 140

133, -2, 32

1150 DATA 83, 69, 8, 32, 65, 78, 68, 32, 82, 69
83, 69, 84

1160 DATA 33, 128 , 186 , 149 , 999

1170 DATA 324

1180 DATA 170, -2 , 128,174, -2, 128,169, 144, -2, 32
170, -3, 32

1190 DATA 149 , -8, 32, -2, 128, 140 , 135, -7, 131, 139
172 , -12, 176

1200 DATA 188 , 135 , 129 , 999

1210 DATA 389

1220 DATA 165, -2, 32,137, 140, 134 , -4, 32, 149, -2
128 , 130, 164

1230 DATA -4 , 176 , 144 , -3, 32, 160 , 176 , 144 , 160 , -2
176 , 999

1240 DATA 454

1250 DATA 137 , 176 , 32,128, -5, 32,130, 171, 144, -4

32, 152, 134

1260 DATA -3, 32,160, 135, 32, 130 , 147, 32, 150 , 999

1270 DATA 520

1280 DATA 131 , 140 , 164 , -6, 176 , 178 , 179 , 159 , 131 , 175
129, -3, 32

1290 DATA 152 , 129 , -2, 32,152, -2, 131, 999

1300 DATA 592 .

1310 DATA -2 , 176 , 191 , -3, 128,137 , -2, 140,182, -2
128 , 144, 134

1320 DATA -4 , 176 , 999

1330 DATA 649

1340 DATA 136 , -3, 140,191, -2, 179,177 , 176 , 32, 137

148 , -4, 32
1350 DATA 130 , 181 , 152 , 133, 128 , 160 , -2, 176 , 178 , 187
157 , -4, 140

1360 DATA 132 , 999

1370 DATA 731

1380 DATA -3, 131 , 139, 141, -4, 140, 142, 135, -3, 131
129 , 999

78

GRAPHICS

Super Fast Graphics in BASIC

by Hardin Brothers

f you have at least one disk drive and any popular disk operating system,

you have a pair of powerful screen-handling and graphics commands.
Using only BASIC, you have the following abilities:

1) To quickly scroll your screen up, down, left, or right, creating a moving
window like that in Seripsit.

2) To create running borders anywhere on the screen that are as fast as those
used in machine-language games.

3) To scroll any portion of the screen in any direction, leaving the rest of the
screen completely undisturbed.

4) To alternate almost instantly between any two completely different
screens.

5) To enter a complete screen of data, text, or graphics into memory from
the keyboard without worrying about prompts, the ENTER key, or defining
string lengths,

You have probably seen the statements LSET and RSET in the random
files section of the DOS manual. This article presents a series of short
routines that demonstrate ways of using these commands that the manual
does not mention.

BASIC String Handling

The routines involve string manipulation, so a quick review of BASIC’s
string-handling commands and idiosyncracies is in order. First, enter but do
not run the following program:

10 ? PEEK(VARPTR(A$) + 1) + PEEK(VARPTR(A$) + 2)+256

20 ? PEEK(VARPTR(B$) + 1) + PEEK(VARPTR(B$) -+ 2)+256
Information about each active string is kept in a memory index above the
BASIC program. The index includes the string’s name and length, and the
address of the string. Literal strings (defined in statements like
A$ =“LITERAL”) are stored in the program lines in which they are de-
fined. Manipulated strings are kept in the cleared string space at the top of
available memory.

VARPTR(AS) is the address of the string length; PRINT PEEK(VARPTR
(A$)) prints the length of the string. The two bytes immediately following
the string length in the index table contain the address of the string in least
significant byte / most significant byte form. Using this short program, you

79

graphics

can obtain the addresses of the active strings A$ and B$ by entering GOTO
10. Do not enter RUN, because it would erase the pointers to the variables
A$ and B$.

In the following discussion, the addresses of strings are those obtained us-
ing a Model I with 48K RAM and NEWDOS + . The values you find with
your computer may be different, but their interpretation is the same. Enter
from the Command mode:

CLEAR 1000:A$ =“TEST #1":B$ = A$:GOTO 10

The numbers 65529 and 65522 appear, indicating that the top seven bytes of
memory hold A$, and the next seven hold B$. Now enter:

A$ =B$:B$ = A$:GOTO 10
A$ is stored at 65515, and B$ is stored at 65508. If you use DEBUG tolook at
memory, you find that the top 28 bytes contain:

TEST #1TEST #1TEST #1TEST #1

Even though you have only two active string variables and they are iden-
tical, BASIC stores the same text four times.

If you experiment with other string functions, such as LEFT$, RIGHTS$,
and STRINGS$, you find that more high memory is used each time a string is
manipulated. When no room is left in cleared high memory, BASIC goes
through its garbage collecting routine, moving active strings up to the top of
memory and ignoring but not erasing memory that is no longer used for ac-
tive string storage. This is why programs that handle a lot of strings stop so
often to rearrange memory—the cleared space is used up quickly.

LSET Makes a Difference

Type in CLEAR 1000 again to clear all variables, then enter:
A$ = STRING$(64,32):B$ =“//TEST #2//":GOTO 10
A$ occupies the top 64 bytes of memory (starting at 65472) and B$ occupies
the next 11 bytes (starting at 65461). Enter:
LSETA$ =B$:? LEN(A$):GOTO 10
A$ has NOT moved. It is still 64 bytes long, and it is still at the very top of
memory. PRINT A$ to see what is in the string. //TEST #2// and 53 blank
spaces appear. Enter:
B$=A$:GOTO 10

B$ has moved down 64 bytes below its previous address (65397), but A$ still
has not moved. Try the same experiments using RSET instead of LSET. The
results are the same, but now both A$ and B$ have 53 blank spaces followed
by //TEST #2//. Aslong as you do not put A$ on the left side of the equal sign
without LSET or RSET, its address does not change.

When the program encounters LSET A$ = B$, B$ is copied into A$, but
neither the position nor the length of A$ changes. IF B$ is longer than A$, B$

80

graphics

is truncated on the right as it is placed in A$. If A$ is longer than B$, LSET
adds extra spaces on the right to pad out A$, while RSET adds those extra
spaces on the left. In no case, however, does the address or length of A$
change.

Pointing Strings at Video Memory

The first key to super graphics handling is remembering that LSET and
RSET do not disturb the address of a string. The string stays at a given spot
in memory. The second key is even simpler.

The TRS-80 video display is memory-mapped. This means that, from a
programming point of view, anything you put in addresses 15360 to 16383
appears on the screen. The seven (eight with a lowercase modification) video
RAM chips look and act like any other 1024 bytes of memory as far as the
computer is concerned. When you use POKE graphics, all you are doing is
POKEing information into specific addresses in the video RAM. Special cir-
cuitry translates any information in the video RAM into a screen display.

If you could make BASIC think that the address of a string was in the
video screen area between 15360 and 16383, you could put information onto
the screen using LSET and RSET and take information from the screen,
without using PRINT, POKE, or PEEK statements. Remember how you
found the string address? You can change that address by POKEing
whatever values you want into the index. You can also arbitrarily set the
length of a string by POKEing a length value into the index.

As an example, enter NEW and then run the following short program:

10 CLEAR 1000 : A$ ==~

20 POKE VARPTR(A$),64

30 POKE VARPTR(A$) + 1,15872 — INT(15872/256)+ 256

40 POKE VARPTR(A$) + 2,INT(15872/256)
A$ is defined as a 64-byte string at address 15872, which is the middle line on
the video screen. Now enter:

B$ =“TEST #3”: C$ = STRING$(64,191): RSET A$ = B$
TEST #3 should appear on the far right side of the ninth line of the screen.
Now try:

LSET A$ = C$

You get a solid bar across the ninth line of your screen.

The LSET and RSET routines are fast, apparently because they are
relatively simple for the computer to carry out. The graphics generated with
them are also fast, at least for a BASIC program. Another advantage of using
LSET and RSET graphics is that there is no unwanted screen scrolling,
Because you do not use the PRINT function, the cursor position does not
change, and you are able to print to the lower right-hand corner of the
screen without forcing an automatic scroll.

81

graphics

The Scrolling Routines

Each of the routines in the listings is meant to give you some suggestions
about how you can use LSET and RSET graphics in your programs. Instead
of presenting you with a finished program, I am presenting several short
routines from which you can pick and choose. The line numbers in the
routines are consecutive, and you can run them together as a single
demonstration program.

Program Listing 1 is a housekeeping routine that I have named the Master
Module. It performs functions that are necessary for each of the other
routines and should precede all other routines in your program. The easiest
way touse this routine is to enter it and save it to disk, then call it back before
you enter any other listings.

Line 10 clears the screen and then clears a large chunk of string space.
When you run graphics programs, you should clear as much memory as the
program can afford so that you minimize or eliminate any pauses for gar-
bage collection.

Line 12 defines variables, starting with A through F, as strings, so you do
not have to enter a dollar sign for each one. It defines variables G through L
as integers to be used in loops and counting sequences. Line 14 sets the
dimensions of three string arrays you will use. A(X) is a string array pointed
to lines on the video screen; B(X) is a line of text created for demonstration
purposes; E(X) is a line of text or data taken from the screen.

The loop in lines 16 through 28 points each of the A(X) variables at a line
on the video screen. It is almost identical in operation to the short program
presented earlier. You may notice, however, that the first member of the ar-
ray, A(0), is pointed to memory below the video screen. A(0) is not used in
these programs; it is there for insurance. In developing these routines, I
found that BASIC sometimes changes the address of the first string in the ar-
ray and points it to the area of memory usually used for data buffers in disk
operations. I don’t know the reason for this, but defining an extra string,
A(0), solves the problem and requires no extra memory.

Lines 30 to 36 define the 30 members of the B(X) array as text for
demonstrations. Lines 38 to 42 set up two graphics strings, C1 and C2,
which are used in the running borders demonstrations. Line 46 defines a
string, C3, which appears as a solid bar across the screen, and line 48 defines
a nullstring, CL, that is used for clearing any line of the video display.

Program Listing 2 is the simplest routine. Its purpose is to display running
borders on the top and bottom of the screen. Each time the program loops
through lines 114 through 120, C1 moves one space to the left on the top and
bottom lines of the screen, and C2 moves one space to the right on the second
and fifteenth lines of the screen. Line 124 sends the program back to line 112
to repeat the process unless there is any keyboard input. Though the routine
is simple, the effect on the screen is significant.

82

graphics

Program Listing 3 demonstrates two types of vertical scrolling. Lines 212
to 226 scroll six different lines of text down the screen individually. Each
time the program passes through the inner loop (lines 214 to 224), the cur-
rent line of text is placed one line lower, then the previous line is erased by
LSETing a null string (CL) into it. The timing loop in line 222 is shortened
for each new line of text. As a result, the first line of text scrolls down the
screen relatively slowly, while the last line, line 6, scrolls almost too quickly
for you to read.

Lines 232 to 246 are almost identical to the previous lines except that the
line of text is scrolled up and the timing loop is adjusted to scroll the first line
quickly and the last line slowly.

Lines 252 to 262 scroll 30 lines of text down the screen. K is used to count
the number of lines used, and when the thirtieth line of text enters the
screen, the routine comes to an end. L counts the number of active screen
lines. Each time a new text line is introduced, the number of active screen
lines increases until the entire screen is used. Finally, the short loop from 254
to 258 does the actual scrolling and determines which text line is to appear
on which screen line.

Lines 284 to 294 scroll the same 30 text lines upward. You could replace
this routine by moving the cursor to the beginning of the last screen line and
then PRINTing each line of text. Using LSET, however, allows 16 full lines
of 64 characters to be shown on the screen. The PRINT statement, because
of the automatic scroll whenever a character is printed in the lower right-
hand corner of the screen, could never display more than 15 64-character
lines,

Scrolling Horizontally

The fourth routine, in Program Listing 4, demonstrates horizontal scroll-
ing, which is usually only found in expensive word-processing programs. To
move any line across the screen requires two loops: one to move the text line
onto the screen, and another to move it off. As with the vertical scrolls, the
horizontal scrolls are first demonstrated with single text lines and then with
a full screen.

First, four text lines are scrolled across the screen from right to left in lines
312 to 326. The first loop, lines 314 to 318, RSETs increasing portions of the
text line into the eighth screen line. Then, in lines 320 to 324, decreasing por-
tions of the text line are LSET into the screen line. Lines 334 to 344 are
similar but, by decreasing instead of increasing the counting variable, H,
they move the text lines from left to right. Lines 352 to 370 and 376 to 394 are
almost identical except that they are used to scroll a complete screen left and
then right.

Program Listing 5 demonstrates how you can use vertical and horizontal
scrolling together. It also shows how you can scroll part of the screen

83

graphics

without affecting the rest of the screen. In lines 410 to 418, identical strings
of graphics blocks are simultaneously scrolled both up and down to cover
two-thirds of the screen. If you would like to see the scrolling more clearly,
add a short timing loop between lines 414 and 418. Then, the 30 lines of text
are scrolled down through the six-line window left in the middle of the
screen. The logic used is almost identical to that of Program Listing 3, except
that only six lines instead of 16 are being scrolled.

Lines 432 to 436 capture the present screen in array E(X). Line 434 does
not change the addresses of the array A(X) because A() is on the right side of
the equal sign. If it were on the left of the equal sign, we would lose our
ability to LSET strings to the screen. E(X) is used to capture the screen and
make the rest of Program Listing 5 independent of the actual data that is on
the screen.

Lines 438 to 446 scroll the middle window of text off the screen to the
right. Then, lines 448 to 458 scroll the two graphics blocks off in opposite
directions. In both cases, the logic is identical to that used in Program
Listing 4.

Screen Input and Screen Swap

The last two demonstration routines are shown together in Program
Listing 6 because the second routine, the screen swap, uses the screen
generated by the full screen input routine for half of its data. The screen
swap can also be used with any two full screens or partial screens of data.

I will not describe the screen input routine in great detail because most of
it has little to do with LSET/RSET graphics. The routine first asks if you
wish to input text (alphanumeric) or graphics data. If you choose graphics,
each regular keyboard key is capable of inputting two different graphics
blocks at the cursor position, depending on whether the SHIFT key is held
down at the same time as the letter. Regardless of which input mode you
select, the arrow keys, ENTER, and CLEAR all perform screen editor func-
tions by moving the cursor or clearing the current line.

After the cursor has moved off the bottom of the screen and you have
finished entering a full screen of text or graphics, the program falls through
to line 582. In the next three lines, just as in Program Listing 5, the screen is
put into the E(X) array and thereby stored in high memory.

The screen swap routine, lines 610 to 626, is very simple. The first loop,
lines 610 to 614, fills the screen with the dummy text that you have used in
each of the other routines. The program then looks for any key to be pressed
(line 616), and, when a keystroke is found, the text you entered during the
screen input routine is displayed (lines 618 to 622). You can continue to
switch between the two screens by pressing any key on the keyboard. This
simple routine shows the remarkable speed of LSET graphics.

84

graphics

Using the Techniques

Using these graphics tricks, you can make the graphics in your programs a
lot more spectacular. Any program, whether it be a game, a business ap-
plication, or a personal utility program, looks much more professional with
a running border around its title screen. You can use the horizontal and the
vertical scrolls for marquees and computer animated movies. You can use
the screen swaps for complex games with more than one board or for ex-
amining each level of three-dimensional Tic Tac Toe.

All of these routines have applications for data input and handling
routines in business or home finance applications or in data-base manage-
ment programs. There is no reason to restrict yourself to strings such as A(X)
that are each one line long. Longer strings of up to 255 bytes can be pointed
at the video screen so that up to four lines of data can be LSET or RSET to
the screen instantly. Short strings can be pointed at the screen to handle for-
matted information such as mailing addresses or social security numbers.

85

graphics

Program Listing 1. Master module

trakx | SET/RSET GRAPHICS ****

Rkl MASTER MODULE ~ *%¥*

! WRITTEN BY HARDIN BROTHERS

! 280 NORTH CAMPUS AVE.
' UPLAND, CA. 91786

10 CLS : CLEAR 10000
12 DEFSTR A - F : DEFINT G - L
14 DIM A(16), B(30), E(16)

16 FOR I = 0 TO 16

18 A(I) = o

20 G = 15360 + (1-1)*64

22 POKE VARPTR(A(1)), 64

24 POKE VARPTR(A(I))+1, G-INT(G/256)*256
26 POKE VARPTR(A(1))+2, INT(G/256)

28 NEXT I

30 FOR I =1 TO 30

32 8(1) = STRING$(I,"-") + “LINE " + STR$(I)
34 B{1) = B{I) + STRING$(64-LEN(B(I)),"-")
36 NEXT I

38FOR I =1T017
40 C1 = C1 + CHR${191) + " "
42 €2 = C2 + CHR$(140) + " "

NEXT 1
46 C3 = STRING$(64,191)
cL =

Program Listing 2. Running borders

100 '*%+* LSET/RSET GRAPHICS **%*

101 '***%x RUNNING BORDERS ****

102 °

103 'THIS ROUTINE MUST BE PRECEDED BY THE MASTER MODULE
104

110 CLS

111 LSETA(8)=STRING${19,32)+"PRESS ANY KEY TO CONTINUE"
112FOR I =1 T0 4

114 LSETA(1) = MID$(C1,1)

116 LSETA(16) = MID$(C1,1)

118 LSETA{2) = MID${C2,5-1)

120 LSETA(15) = MID$(C2,5-1)

122 NEXT 1

124 IF INKEY$="",112

Program Listing 3. Vertical scrolls

200 '*%** | SET/RSET GRAPHICS ****

201 '*x%x VYERTICAL SCROLLS ****

202 !

203 'THIS ROUTINE MUST BE PRECEDED BY THE MASTER MODULE
204 '

205 ' ** SCROLL A SINGLE LINE DOWN THE SCREEN **

210 CLS

212FOR I =1T06

214 FOR J =1 T0 16

216 K=d-1:IFK=0,K=16

218 LSETA(K) = CL

220 LSETA(J) = B(1)

222 FOR L = 0 T0 {6 - I)*20 : NEXT L
224 NEXT 4

226 NEXT 1

86

230
232
234
236
238
240
242
244
246
250
252
254
256
258
260
262
280
282
284
286
288
290
292
294

graphics

“*#% SCROLL A SINGLE LINE UP THE SCREEN
FORI=1T06
FOR J = 16 TO 1 STEP -1
K=d+1:IFK=17, K = 1
LSETA(K) = CL
LSETA(d) = B(1+6)
FOR L = 0 TO (I-1)*20 : NEXT L
NEXT 4
NEXT 1
‘** SCROLL 30 LINES OF TEXT DOWN THE SCREEN
K=0:

oo

NEXT J

L=L+1: [F L>16 , L=16

K = K+ 1: IF K<30 THEN 254

'#% SCROLL 30 LINES OF TEXT UP THE SCREEN
CLS

K=0:01=16
FOR J = 16 TO L STEP -1
LSET A(J) = B(K + J -15)
NEXT J
L=L~-1:IF L, L=1

K=K+ 1: IF K<30 THEN 286

300
301

Program Listing 4. Horizontal scrolls

Paxkx | SET/RSET GRAPHICS #x%
PH*xx HORIZONTAL SCROLLS *x*x

302 '

303

'THIS ROUTINE MUST BE PRECEDED BY THE MASTER MODULE

304

305
310
312
314
316
318
320
322
324
326
330
332
334
336
338
340
342
344
346
350
352
354
356
358
360
362
364
366
368
370
374
376
378
380
382

‘** SCROLL A SINGLE LINE LEFT

cLs
FORG=17T04
FOR H = 1 T0 63
RSET A(8) = LEFT$(B(G),H)
NEXT H
FOR H = 1 T0 64
LSET A(8) = MIDS(B(G),H)
NEXT H
NEXT G
"#* SCROLL A SINGLE LINE RIGHT
FORG=5T08
FOR H = 64 T0 1 STEP -1
LSET A(B) = MID$(B(G),H)
NEXT H
FOR H = 63 TO 0 STEP -1
RSET A(8) = LEFT$(B(G),H)
NEXT H
NEXT G
%% SCROLL A FULL SCREEN LEFT

FOR G = 1 TO 63
FOR H = 1 T0 16
RSET A(H) = LEFT$(B(H),G)
NEXT H
NEXT G
FOR G = 1 TO 65
FORH =170 16
LSET A(H) = MID$(B(H),G)
NEXT H
NEXT G
'+* SCROLL A FULL SCREEN RIGHT
FOR G = 64 TO 1 STEP -1
FOR H =1 T0 16
LSET A(H) = MID$(B(H),G)
NEXT H

Program continued

87

384
386
388
390
392
394

graphics

NEXT G
FORG = 63 T0 O STEP -1
FOR H =1 T0 16
RSET A(H) = LEFT$(B(H),G)
NEXT H
NEXT G

400
401
402
403
404
405
410
412
414
418
420
422
424
426
428
430
432
434
436
438
440
442
444
446
448
450
452
454
456
458

Program Listing 5. Mixed screen routine

Pakxk | SET/RSET GRAPHICS *x#*
txkex MIXED SCREEN ROUTINE **
!

'THIS ROUTINE MUST BE PRECEDED BY THE MASTER MODULE

cLs
FOR 1=1 TO
LSET A{
LSET A{

B(30 - K +J - 6)

1 IF L>11,L=11

IF K<30 THEN 422
0 16
A(L)

FOR G = 63 T0 0 STEP -1
FOR H = 6 TO 11
RSET A(H) = LEFT$(E(H),G)
NEXT H
NEXT G
FOR G = 1 TO 64
FORH=1T0S
LSET A(H) =
RSET A(17-H)
NEXT H
NEXT G

Wt ok

1

MID$(E(H),6+1)
= LEFT$(E{H),64-G)

)s
FT$(E

500
501
502
503
505
506
507
508
509
510
512
514
516
520
530
532
540
550
560
562
570
572
574

Program Listing 6. Full screen input and storage

iekwr SET/RSET GRAPHICS *%%*

Verk FULL SCREEN INPUT #e#*

vwkxx AND STORAGE whk

' MUST BE PRECEDED BY THE MASTER MODULE
CLS:PRINT@A471, "GRAPHICS OR TEXT?"

F=INKEY$: IF F="" THEN 506

IF F="G" OR F="g" THEN G=96 ELSE G=0

cLS

D = CHR$(1)+CHRS (8)+CHRS (9)+CHRS(10)+CHRS (91)+CHRS (13)+CHR$(31)
FOR [=15360 TO 16383

E=INKEY$: IF E="", K=PEEK(I): POKE I,132: POKE I,K:GOTO 512
IF INSTR(D,E)=0 THEN POKE I, ASC(E)+G : GOTO 580

ON INSTR(D.E) GOTO 520, 530, 540, 550, 560, 550, 570
CLS : GOTO 510

T =1-1: POKE 1,32 : IF I<15360, 1=15360

07O 512

[= 1+7 : GOTO 580

I = INT(i/64)*64 + 63 : GOTO 580

J = INT(1/68)%64 - 64 : IF J<15360, J=15360

I=J: GOTO 512

J = INT(1/64)*64 TO INT(I/64)*64+63

POKE J,32

NEXT J

wowowo

-
o
=51

88

graphics

576 1 = INT{1/64)*64

578 GOTO 512

580 IF I>16383 THEN 582 ELSE NEXT I
582 FOR 1=1 T0 16

584 E(I) = A(I)

586 NEXT I

600 '**xx LSET/RSET GRAPHICS *#+

601 '**** SCREEN SWAP ROUTINE *#*

602 °

603 ' MUST BE PRECEDED BY BOTH THE MASTER MODULE
604 ' AND SCREEN INPUT ROUTINE (LINES 500 - 586)
605

610 FOR I = 1 T0 16

612 LSET A(I) = B(I)

614 NEXT

615 LSETA(8)=STRING$(17,32)+"PRESS ANY KEY TO SWAP SCREENS"
616 IF INKEY$="" THEN 616

618 FOR I = 1 TO 16

620 LSET A(I) = £(1)

622 NEXT

624 IF INKEY$="" THEN 624

626 GOTO 610

89

HARDWARE

EPROM Programmer

91

HARDWARE

EPROM Programmer

by Abel J. Tapia

PROM programmers command a rather high price, so I built a unit

that was inexpensive, simple in design, versatile, and yet contained
readily available parts. This article describes the design of the hardware and
the software necessary to allow the unit to operate. Table 1 lists the pro-
grammer parts; Table 2 lists the power supply parts.

The EPROM that I have chosen to support my ongoing projects is the
2716. At the time of this writing, this EPROM was the most cost-effective on
the market in that it offered the highest density for the money. This is based
on its price divided by the number of programmable bits ($7.00/16384 bits).
The cost per bit is less than 0.042 cents. I made a comparison of the cost of
the 2716 EPROM against the other types currently available, and the 2716
won hands down. I ruled out the 2708 because it requires three different
power supplies to operate, and its cost per bit at this writing was about 0.055
cents ($4.50/8192 bits). The denser 2732 averages about 0.085 cents per bit
($28.00/32768 bits). I anticipate that the 2732 will drop in price and become
cost-effective to the experimenter. In anticipation of this decline in price, I
have designed the programmer to be capable of programming this device
as well.

EPROM and Its Applications

There are three basic types of Read-Only Memory. ROM is Read-Only
Memory that has been mask programmed by the manufacturer and cannot
be altered by the user. PROM is Programmable Read-Only Memory that
can be field programmed by the user. Once it is programmed, however, it
cannot be erased or altered. EPROM is an Erasable Programmable Read-
Only Memory. All three types of Read-Only Memory have one thing in com-
mon—-they can be programmed to perform as permanent memory. This is
done by programming data at all the memory address locations of the
device. Once data has been programmed into a memory location of one of
these devices, it will always read that same information whenever power is
turned on to the device and that particular location in memory is addressed.
Unlike the RAM which loses its contents when power is turned off, the ROM
devices always retain it. This article focuses on the EPROM since it can do
the job of either the ROM or the PROM. The EPROM, as the name implies,
can be erased many times and reprogrammed. To erase, you expose the

93

hardware

device to shortwave ultraviolet light for a period of about 20 minutes.
Special erasers for performing this task are available commercially. Having
this capability means that, if you make a mistake during programming, you
can erase the EPROM and start over. With PROM, there is no second
chance; one programming mistake, and the device winds up in the trash.
There are numerous applications for Read-Only Memory devices. One
familiar application is to use Read-Only Memory to hold a computer pro-
gram. In the TRS-80, ROM stores the BASIC interpreter. EPROM could
have been used as well in this application. Another use is to provide code
conversions. For example, assume that you wish to make a code conversion
between a certain code A and another code B. You could program the
EPROM so that code A was the address to the EPROM, and code B was the
corresponding data for that particular address. Another application is in the
area of look-up tables for mathematical conversions. For example, the ad-
dress could represent an angle, and the output data could be programmed to

Ul--Intel 8255 PPI

U2-741.5138, 1 of 8 decoder

U3—74086, open collector inverter

Q1—2N3904 or equivalent

Q2,Q3--2N2907 or equivalent*

Red LED, Radio Shack cat #276-041 or equivalent

Yellow LED, Radio Shack cat #276-021 or equivalent

Green LED, Radio Shack cat #276-022 or equivalent

S1-DPDT Slide Switch, Radio Shack cat #275-407 or equivalent

Plug-in PC Board, Radio Shack cat #276-154 or 276-156

J1-dual 22-pin edge card socket, Radio Shack cat #276-1551 or equivalent
40-pin edge connector IDC type, Radio Shack cat #276-1558 or equivalent
Cable-flat ribbon, 40-conductor, Radio Shack cat #278-771 or equivalent
Regulator type 7805, Radio Shack cat #276-1770 or equivalent

R1, R8 10k 1/4W 5%

R7, R9, R11 3.3k 1/4W 5%

R13, R14 4.7k 1/4W 5%

R4 470 Ohm 1/4W 5%

R2, R5, R6 1k 1/2W 5%

R12 330 1/4W 5%

R3 5k pot

R10 2.7k 1/4W 5%

C1 10 uf, 10v electrolytic capacitor

C2, C3 - .1uf, 50v disc ceramic capacitor

*1f you substitute for this device, make sure that the replacement part has
low Vce Sat and a minimum HFE of 100.

Table 1. Programmer parts

94

hardware

T1 24 (OR 25.2) VAC CT @ 500 MA Min, Radio Shack cat #273-1512
or equivalent

C4 470 uf minimum @ 40V or greater, Radio Shack cat #272-1046 or
equivalent

C6,C7 .1 uf 50V disc ceramic capacitors

C8 22 uf 20V electrolytic capacitor

C5 2000 uf minimum @ 25V or greater, Radio Shack cat #272-1020 or
equivalent

Heat sink, T0220 type, Radio Shack cat #276-1363 or equivalent

D1 through D4-1A min, 100 PIV or greater, diodes, Radio Shack cat
#276-1103 or equivalent

Fuse 1/2A slow blow type

Regulator type 7805, Radio Shack cat #276-1770 or equivalent

S2 SPST switch, Radio Shack cat #275-612 or equivalent

R15 100 Ohm potentiometer

R16 2.2k 1/4W 5%

Table 2. Power supply parts

represent the sine of that angle. Another use might be in the area of code ac-
ceptance. You could program the EPROM to accept only certain codes at its
address lines, in which case the outputs would be programmed to give a cer-
tain output for a given valid input. It could also be programmed to yield
zeros for all other invalid inputs. Imagine the amount of hardware that it
would take to perform any of the above applications and you can see some of
the power of the EPROM.

The Hardware

Figure 1 is the schematic of the programmer. The circuitry is quite sim-
ple; the entire circuit can be wire wrapped on a Radio Shack plug-in PC
board using wire-wrap sockets. Figure 2 shows a layout of the major com-
ponents of the circuit. For the small, discrete components, I suggest that you
mount them on the board using VECTOR T-44 wire-wrap pins. This allows
you to wire wrap them to the rest of the circuit without any need for solder-
ing. You can obtain most of the components at nominal prices from adver-
tisers in computer magazines and other related publications. If you have
problems finding any of the parts, check your local Radio Shack store. If you
prefer a ready-made printed circuit board for this project, there is one
available that I will explain later in the text.

I chose to use the 8255 PPI as the heart of the circuit. The 8255 is a pro-
grammable I/0 device designed for use with the 8080 microprocessor. Even
though this device has been around for some time, it is quite powerful and
tailor-made for the application I had in mind.

95

hardware

sawwidord WOYJIH 2y fo oppwaoyss T a8y

0t

%e'g
2y
3YNA3008d
POBENZ NOILYHEITYD
10 338, Mm

pled}

2
NE'E
64

LO6ZNZ mzg
20 Wt 1

ASTAOE+ w mm.‘limmL\
® ® B

I 4
H3IBWY

REELD] a3y

L2 vH
ot

NE'E
Y

30A+

EOAMM:

S0V 9/t
€n

40d
90d

§2d

20d
194

G4

18d
98d

Bt B1] 228 €2| 1] 2f £f v] &f 91 ¢] 8

anNg

v

L0BZINZ

3) OIY 6V BY LV SY GV vV ¢V 2¥ iV OV
L3305

WOHI3
2€/9142

00 19 20 €6 8 60 84 20

€0

AZ'G+ =99+ 031539905 (@)

Q31413345 ISIME3HLO SS37TINNM
“ME/t 34V SHOLSIS3Y v @

‘S3ILON

BB EEED

41

pAs

8¢

B¢

8d
[3:21
£8d
284
18d

08d

i¥d
svd
SVd

vod

vd
2vd
| vd

oy
iv

ansgs

13834

§s28
in

ca
ea
1q

T
8
8
€ b4
5 L2
4 8
ang
8€1SIbL
— LA en
P
‘mlﬁ 9A v 7 ov
lnﬂOnr 9 E) 143
s A 2 '®
|ON~ t£A
b
ﬂo 2h 829 3 5¢
L
o1 vaspg 8€
P55 o wl.TNA_I oc
204
m 9042
871
Mi'v en
iy
92 w
90p+
Ai'by HOi
iy I %.o_/“m\
: °T
of v <
sopL ¥
971
€N 20a+
nwm E4]
T 61
e oz
55 t2
&5 82
of 81
3 ez
= 2€
= 22
ve o€
HOLOINNOD 3903
180d NOISNVAX3 08-5HL 7

ang
anNg

ov

2V
€Y

vy

oY
3v
v

-
2
O

l

z

!

~
o

Sd
ba
ca
2a
¢
oa

96

hardware

The 8255 is utilized in what the manufacturer refers to as mode 0 which
allows any of the three addressable ports to be either input or output ports.
The 741.5138 chip forms a decoder network which decodes the PIA ports.
Port 3 controls the internal mode register which configures the device ac-
cording to the codes it receives from the software. Once configured, the par-
ticular ports can then be addressed individually. An instruction to port 0 ad-
dresses port A. Instructions to ports 1 and 2 address ports B and C respective-
ly. In this application, all three ports are used as outputs except when data is
being read from the EPROM for verification. Port B and the four least

AMBER
RED
GREEN

O
O
0)

u2
w

FORCE SOCKET

o
@
)
N
z
o
&
a
i

INSERTION

A0 - - ee - - QA

.........

PLUG ONTO PIN |
OF TRS-80
EXPANSION

2 INTERFACE 1/0
13 || EDGE CONNECTOR
L 1] WiTH CABLE DOWN
\cozs 10
TRS PIN 40

Figure 2. Major components of the circuit

97

hardware

significant bits of port C provide the addresses to the EPROM. The four
MSBs of port C are control bits which activate the output enable bit of the
EPROM and control the application of the various voltages to the EPROM.
Port A is used bidirectionally to provide the data to the EPROM in one in-
stance, and to read the data from the EPROM in the other. The software
controls each of the three ports individually. Once the addressed port has
been instructed to be an output, it latches the data presented on the data bus
and holds it until it is instructed to do otherwise.

Rl and C1, together with inverter U3, comprise a “power on” reset circuit
which ensures that all the ports in the 8255 go to the input mode when power
is first applied to the programmer. In this mode, the 8255 outputs go to a
high impedance state. This condition ensures that Q1, Q2, and Q3 go to the
off state, inhibiting any voltages to the EPROM.

Transistor Q3 is a switch which applies + 5 volts to the EPROM. Transis-
tor Q2 applies unregulated voltage to the regulator circuit which consists of
the 7805 regulator, R2, and R3. Open collector inverter U3 pin 10 controls
the voltage to the programming pin on the EPROM. With pin 11 low, the
output voltage of the regulator is + 25 volts, the voltage required by the
EPROM during the programming phase. The ratio of resistors R2 and R3 es-
tablishes this voltage. When a logic high is applied to U3 pin 11, the output
voltage of the regulator drops to + 5 volts, the voltage required by the Vpp
input of the 2716 EPROM at all times except during programming opera-
tions. The 2732 is different in that it requires a low level at this input except
during programming. The software automatically applies the correct volt-
ages to the EPROM during the various phases of programming and testing.

I have included three different colored LEDs which turn on and off at the
appropriate times to let you know the status of the voltages that are being
applied. This turns out to be a very nice feature in the initial phases of the
circuit checkout. Each LED has a different significance. When + 25 volts is
applied to the programming pin of the EPROM, the red LED lights. When
the voltage at the programming pin goes to + 5 volts for purposes of reading
or verification of the EPROM, the green LED lights. The amber LED
signifies that power is applied to the EPROM. Before inserting any EPROM
into the programming socket, make sure that no LEDs are lit. If any LED is
on, recycle power to the programmer to ensure that all voltages to the
EPROM are off. Under normal circumstances, all voltages are removed
from the EPROM when the program is not running, making it safe to insert
or remove an EPROM from the programming socket.

When working with the TRS-80 expansion bus, keep in mind that it is
possible to damage circuitry within the computer if you inadvertently short-
out or apply any voltages in the wrong places. Double-check all wiring to
the circuit before you connect it to the computer. If you wire the circuit
properly, computer operation is not affected in any way. In fact, you can

98

hardware

leave the circuit permanently attached if you wish. To avoid hand-wiring
errors in such a touchy area, I have had printed circuit boards made for this
project. The boards are available from The CO-ALERT Corporation, 12762
La Brida, Chino, California 91710 for $19.95 plus $2.50 for shipping and
handling.

To couple my programmer to the expansion port of my interface, I use a
flat ribbon cable of about three feet in length. When wiring this particular
section of circuitry, refer to page 228 of your Level I manual for the function
assignments of the 40-pin edge connector. The configuration of the 40-pin
expansion interface connector is the same as that shown for the keyboard. A
word of caution here: The pin numbers of the 40-pin IDC edge connector
may not match those of the edge connector on the expansion interface PC
board. Instead of relying on pin numbers, make sure that the functions get
to the proper places by performing a continuity test of the circuit after the
cable is fully wired. This is another reason I had PC boards made for this
project. In the PC version, this problem is inherently resolved. LNW
owners, be advised that your edge connector is inverted from the Radio
Shack expansion interface. I use an LNW expansion interface and have ex-
perienced no problems with my programmer; in fact, it is permanently at-
tached to my computer. I have successfully programmed EPROMs using a
five-foot cable but I recommend that you use a cable just long enough to do
the job.

The Power Supply

Figure 3 is a schematic of the power supply. I used a common transformer
to keep the cost down. This circuit allows you to generate both voltages re-
quired by the programmer. A simple TO-220 heat sink on the regulator
should suffice since the circuit current drain is low.

Hardware Checkout

After you have completed the construction of the circuit, perform the tests
in this section to ensure that everything is operational. Do not connect the
power supply to the programmer until you have successfully completed each
test. Using a voltmeter, check the power supply Vcc voltage and adjust R15
until the voltage reads + 5.2 volts. Next, check the unregulated voltage.
This voltage should read about +35 volts, depending on the transformer
you use. After the power supply tests, you can connect the power supply to
the programmer. Using the test procedure below, you should be able to exer-
cise all phases of the programmer.

With the power supply off, connect the programmer’s cable connector to
the 40-pin I/O edge connector on the expansion interface. Make sure the
cable is oriented downward as shown on the mechanical drawing. Next,
power-up the programmer. Go into Disk BASIC and issue the following

99

hardware

Th

25.2VAC
Hovac cT
Di-D4
100PIV +35V
Fi @A UNREGULATED
1724
SLO-BLO
*tca
470 4F
s2 a0v
ADJUST
+Vee [TO
+5.2v
in 1805 OV] T

| ca
.L J._ c6 com RI6 —]_ c7 —L 22uF

RIS

E 1000

7

GND

Figure 3. Schematic of the power supply

command: OUT 3, 128. This configures all ports for output. Next, enter
OUT 2,64. This sends + 35 volts as input to the programmer’s 7805. Adjust
potentiometer R3 to yield + 25 volts on the output of the regulator. At this
time, you may wish to apply some fingernail polish on the potentiometer to
prevent accidental bumping of the adjustment. The red and amber LEDs
should be lighted. Next, verify that +5 volts appears on pin 24 of the
EPROM socket.
You are now ready for the I/O check-out. Enter the following:
N=0
OUT O,N
OuUT 1,N
OUT 2,N
Verify that all 8255 outputs are low. Repeat these OUT commands after
entering N = 255, and the outputs should be high. The last test is to run the
following BASIC source code which puts the LEDs in the following se-
quence: amber; amber/red; amber/green; all off; red; green; repeat.
10 OUT 3,128
20 FORZ=0 TO 255
30 OUT2,Z

40 NEXT Z
50 GOTO 10

If your circuit successfully passes these tests, then it is functioning properly.

The Software

As you can see from the Program Listings, the software is written in
assembly language. I added comments on the source programs to aid in
understanding the program flow. I could have written it in BASIC, but ex-

100

hardware

ecution time would have been much longer. Using this software, a 2716
EPROM programs in less than 110 seconds. The 2732 takes approximately
twice as long, as it contains twice the amount of memory.

I broke the software into four programs, each designed to perform a
specific task. The READPROM program (Program Listing 1) is designed to
allow you to read an EPROM and either save the contents on disk or transfer
the data to another EPROM. The CHKERASE program (Program Listing
2) allows you to check an EPROM to see that it is completely erased. I highly
recommend that you perform this test on every EPROM before you program
it. The PGMEPROM program (Program Listing 3) is the software that does
the actual programming of the device. The VERIFY program (Program
Listing 4) performs verification of the programmed data. 1 found that struc-
turing the software in this manner allows me considerably more flexibility
than lumping it into a single program.

These programs are designed to reside in high memory to allow you to
protect this section of memory in case you wish to combine any BASIC pro-
grams with this system. From BASIC, you have the opportunity to protect
this section of memory to ensure that you don’t destroy any data with the
BASIC program. To accommodate those users with only 32K of memory, 1
protected memory above AAOOH (43520 decimal). This leaves you room for
up to 1X of special routines that could reside at the very top of memory.

To program the 2732 EPROM, you must make the following changes to
the programs indicated:

READPROM
1) In line 130 change B3FFH to BBFFH.
2) Change line 220 to read:
LD BC,4096
3) Insert line 275 and add the following comment:
;AND PLACE EPROM IN READ

4) Delete lines 290 and 300.
5) Change line 340 to read:

OR 20H
6) Delete line 350.
CHKERASE
1) Delete lines 370 and 380.
2) Change line 410 to read:

LD BC,4096

3) Change line 450 to read:

OR 20H

101

hardware

PGMEPROM
1) Change line 150 to read:
BBFFH
2) Change line 340 to read:
LD BC,4096
3) Change line 600 to read:
OR 40H
4) Change line 660 to read:
LD A,50H

5) Delete line 670.
6) Change line 690 to read:

;AND PROGRAM PULSE GOES HI

VERIFY

1) In line 150, change B3FFH to read BBFFH.
2) Delete lines 360 and 370.
3) Change line 410 to read:
LD BC,4096
4) Change line 450 to read:
OR 20H

These changes are easy to make if you load the original programs into
EDTASM and make the changes. When the changes are complete, reassem-
ble the programs and give them different names to distinguish them from
the 2716 programs.

Saving Programs to Disk

After you have saved the source files and have generated object files using
EDTASM, do a disk dumnp of the programs. The procedure for doing this ap-
pears in your DOS manual, but I will repeat it here. From DOS, load the
READPROM object file, then perform the disk dump as per the example
that follows. Give the program the name READPROM/CMD. While in
DOS, type:

DUMP READPROM/CMD (START = X'AA00’,END = X'AA50’, TRA = X'AAQ0’)
Now press ENTER, and the program goes to disk under the name of READ-
PROM/CMD. Repeat this procedure for the remaining programs, giving
each its appropriate name, followed by the extension /CMD. Once the pro-
grams have been saved to disk in this manner, they will execute directly from
DOS. The ending addresses for the CHKERASE, PGMEPROM, and
VERIFY programs are ABC0O, AB08, and ABC7 respectively. These ending
addresses are for the 2716 programs. The ending addresses for the 2732 are

102

hardware

AA4C, ABBC, ABO07, and ABC3 for the READPROM, CHKERASE,
PGMEPROM, and VERIFY programs respectively.

Executing Programs from DEBUG

I prefer to use DEBUG to execute the programs because it allows me con-
siderable flexibility in observing program execution. I can do an investiga-
tion of RAM very easily to see how things have progressed. I can also jump to
various portions of the program as I desire. To execute the program from
DEBUG, proceed per the instructions that follow. The first order of business
is to load the desired program from DOS. Next, type DEBUG and press
ENTER. Press the BREAK key, and you enable the DEBUG program. Once
in DEBUG, type GAAOQQ. Press ENTER, and the program begins. After the
program has completed execution, it returns to DOS. At this point, if you
wish to make a memory dump, reenter DEBUG by pressing the BREAK key
and type DACOO followed by ENTER. If you wish to display an entire
screen’s worth of memory, press the S key. To observe the next 256 bytes of
memory, press the + key. For a more detailed explanation of DEBUG func-
tions, refer to the DOS manual under DEBUG.

Reading an EPROM

To read an EPROM that has been previously programmed, execute the
READPROM program. This program reads the EPROM and places the con-
tents in memory locations ACOOH to B3FFH for the 2716 and locations
ACO00H to BBFFH for the 2732. Once at this location, the contents can then
be copied to another EPROM or saved to disk through a disk dump.

Programming an EPROM

Before you program an EPROM, make absolutely sure that the 2716/2732
switch is in the proper position for the EPROM you are programming.
Failure to do this will surely ruin the device. You also must ensure that the
data to be programmed is residing in RAM locations ACOOH through
B3FFH for the 2716 or from ACO0H through BBFFH for the 2732. You can
do this by several different means. One method, already described, is
reading a previously programmed EPROM using the READPROM pro-
gram. This automatically places the data into the proper RAM locations for
programming. Another method is to manually insert the data to be pro-
grammed into these RAM locations. You can do this using the M (modify
memory) command of DEBUG. Another method is to POKE the data into
the aforementioned RAM locations from a BASIC program. If you use this
method, BASIC normally requires that you use decimal notation and not
hexadecimal for POKEing into memory. There is a little trick that you can
use, however, to get around this problem and save yourself a lot of hassle
converting from one number system to another. The following BASIC pro-

103

hardware

gram is an example of how this is done.

10 N=&HAC00 :REM (HEREIN LIES THE TRICK:&HACO00 = Decimal 4032)
20 FORX=0TO8

30 FORI=0 to 255

40 POKE N,I

50 N=N+1

60 NEXT 1

70 NEXT X

80 END

This program alternately places the number sequence from 0 to 255 eight
times in the 2716. The program itself is not very useful other than to il-
lustrate a point, although you might consider using it to program your first
EPROM. Remember that you can always erase it and use it again. It allows
you to exercise the programmer fully and has an easily recognizable data
pattern.

I highly recommend that you run the CHKERASE program before you
start to program an EPROM. This program checks all locations of the
EPROM to see that they are completely erased. If any data other than FF
hex is found at any location, the program stops and tells you that data exists
at the address specified. You are given the option to check the EPROM for
other faults or to terminate the operation. If no faults are found, the pro-
gram continues without interruption. If a fault occurs, follow the program
prompts. This ensures that the program will remove all EPROM voltages at
the completion of the test.

Once you are sure the EPROM is fully erased, execute the PGMEPROM
program. This program does the actual programming of the EPROM.
While it is running, the red LED is on, indicating that + 25 volts is present
on the programming pin of the EPROM. The address of the location that is
being programmed is displayed on the screen as well. This address is in hex
notation. When the address reaches 800 hex (2048 decimal), the program-
ming phase is complete for the 2716. For the 2732, the address goes to 1000
hex (4096 decimal). At the completion of the programming phase, the
system returns to DOS. At this point, load and execute the VERIFY program
to check the contents of the EPROM data you just programmed against the
data that you used to program it. When verifying the 2716, the red LED is
off and the green LED is on. This signifies that the programming voltage has
been removed from the EPROM and that + 5 volts is now applied to the pro-
gramming pin, placing the EPROM in the read mode. The 2732 is different
in that the programming pin requires a low level at its input, causing the
green LED to be off. If the EPROM fails to verify, the program stops and
specifies the address location of the incorrect data, along with the actual
data that was read. In addition, the program specifies the data that should
have been read and gives you the option of checking for further failures or

104

hardware

ending the operation. If no failures are found, the program continues
without interruption. This signifies that the EPROM was successfully pro-
grammed.

Using the Programmer as an 1/O Port

This programmer can serve as an 1/O port if you connect a 24-pin flat rib-
bon cable to the zero insertion socket, using a 24-pin dip socket. You can use
20 of the 24 pins of the EPROM socket from the 8255 for your special I/O ap-
plications. You must make the ground at pin 12 common to your I/O circuit.
Instantly, you have two eight-bit bidirectional ports and one four-bit
bidirectional port at your disposal. Use these ports for whatever application
you wish. The only restriction is that you must limit each output to the
equivalent of one TTL load and restrict all inputs to TTL voltage levels.

DATA | PortA | PortB PortClo | PortChi

(TO#3) (#0) (#1) (#2 LSBs) | (#2MSBs)
* 9BH input input input input
9AH input input output | input
99H input output input input
98H input output output | input
8BH output | input input input
8AH output | input output input
89H output | output input input
88H output | output | output | input

* = gutomatic configuration at power-on reset

Table 3. I/0 configuration

You can use the BASIC OUT and IN instructions to control the 8255. See
Table 3 for information on configuring the I/O port to your needs. First, set
the mode register according to the way you wish to configure your ports.
The first column in the table gives you the hex number that must be sent to
the internal mode register to configure it per the associated row. For exam-
ple, if you wished to make ports A and C inputs and port B an output, you
would go into Disk BASIC and type the following:

OUT 3,&H99

This command to the internal mode register configures the ports as de-
scribed above. You can now either output data to a port or input data from a
port as described in the following examples.

105

hardware

® Input of data is done as follows:
A =INP(0)
PRINT A
® Qutput of data is done as follows:
OUT 1,nn
Note that nn can be any decimal number between 0 and 255.

The simplicity of this project results from sharing the hardware and soft-
ware responsibilities. It offers both hardware and software oriented in-
dividuals exposure to both worlds.

106

hardware

Program Listing 1. READPROM

00100 tt'k't************t*******************t*tit*t*************

00110 ; >3>>>>READPROML LK *
00120 ,* THIS PROGRAM HILL READ AN EPROM AND PUT THE CONTENTS *
00130 ;* IN LOCATIONS ACOOH TO B3FFH. USE DEBUG TO READ QUT *
00140 ,* DATA. *
00150 ;* *
00160 ; PROGRAM WRITTEN BY ABEL J. TAPIA 06/15/81 *
00170 ***t**********"k*****t*******************ﬁ**************

ARDO 00180 ORG 0AACOH

AAQD CDC901 00190 CALL 01C9H ;CLR SCREEN RTN

AAO3 1100AC 00200 LD DE,OACOO0H ;DATA DESTINATION

AAO6 210000 00210 LD HL,000CH ;EPROM ADDRESS

AAQ9 010008 00220 LD 8C,2048 JNO OF BYTES

AAOC 3E90 00230 LD A,90H ;PP CONTROL WORD
00240 ;7O MAKE A PORT=INPUT
00250 ;B&C PORTS=0UTPUT

AAQE D303 00260 ouT (03),A JSEND IT OUT

AA10 3E20 00270 LD A,20H ;CMD WRD TO TURN ON PWR

AA12 D302 00280 ouT (02),A ;SEND TO PORY C

AAl4 3E60 00290 LD A,60H ;CMD WRD FOR EPROM READ

AA16 D302 00300 ouT (02),A 3SEND IT OUT

AR18 7D 00310 CONT LD A,L ;ADDRESS LSB

AA19 D301 00320 ouT (01),A ;SEND TO B PORT

AR18 7C 00330 LD AH ;ADDRESS MSB

AALC F660 00340 OR 60H ;CONTROL WRD TO APPLY +5V
00350 ;TO EPROM VPP INPUT TO
00360 JALLOVW EPROM TO READ

AALE D302 00370 ouT (02),A ;SEND WORD 7O PORT C

AA20 DBOO 00380 IN A,(00) ;READ EPROM DATA-PORT A

AA22 12 00390 LD (DE),A ;SEND TO DESTINATION

AA23 0B 00400 DEC BC ;DECREMENT BYTE COUNTER

AA24 78 00410 LD A,B ;PUT MSB BYTE IN A

AA25 Bl 00420 OR C ;0R H/LSB BYTE

AA26 CAZEAA 00430 JP Z,FINISH ;ALL BYTES PROCESSED?

AA29 13 00440 INC DE ; INC DESTINATION PTR

AAZA 23 00450 INC HL ; INC EPROM ADDRESS

AAZB C318AA 00460 JP CONT ; CONTINUE PROCESS

AA2E 11143t 00470 FINISH LD DE,3C00H+532 3 SCREEN POINTER

AA31 010D0C 00480 LD B8C,13 ;NO OF CHARS

AA34 2144AA 00490 LD HL, MSG 3PT TO MESSAGE

AA37 EDBO 00500 LDIR SSEND IT OUT

AA39 3E9A 00510 LD A, 9AH ;CMD WRD TO MAKE
00520 ;A&B PORTS=IN,C=0UT

AA3B D303 00530 ouT (03),A $SEND IT OQUT

AA3D 3EAC 00540 LD A,0ACH ;CMD WRD TO TURN OFF PWR
00550 ;TO EPROM

AA3F D302 00560 ouT (02),A ;SEND OUT CNTRL WORD

AA41 C32D40 00570 JP 4020H JRETURN TO DOS

AA44 54 00580 MSG DEFM ‘TEST COMPLETE'

0000 00590 END

00000 TOTAL ERRORS

Program Listing 2. CHKERASE

88}?8 **********i**********************ﬁ********i*************

3* >>3>>>CHKERASE LKL

00120 ;*

00130 ;* THIS PROGRAM WILL TEST EPROM TO ENSURE THAT ALL

00140 ;* LOCATIONS ARE ERASED. IF EPROM CONTAINS DATA,PROGRAM

00150 ;* WILL STOP AND DISPLAY ADDRESS OF LOCATION CONTAINING

00160 ,* THE DATA.

00170 ;*

00180 ;* PROGRAM WRITTEN BY ABEL J. TAPIA 06/30/81
’

00190 CRRREEARIAKRKEEIRREIIKRRAARRRRRRR AR RRRRL AR RARRRRR IR ARAR KK

AAOO 00200 ORG OAAOOH

* % ok H E % H %

Program continued

107

3C00
AAGO
AAO1
AAD3
AAQOS
AAD7
AACA

AAOC
AADE
AA1O
AALZ
AAlS
AA18
AALB
AA1D
AALF
AAZ1
AAZ4
AA27
AAZA
AAZB
AAZ2D
AAZE
AA30
AA32
AA34
AA36
AA39
AA3A
AA3B
AA3C
AA3F
AA4D
AA43
AA44
AA47
AA48
AA4B
AAGE
AA 1
AA53
AAS6
AA59
AASD
AA61
AA64
AA67
AABA
AAGD
AAT0
AAT2
AA76
AAT7
AA78
AATB
AATC
AATF
AABO
AAB3
AAB7
AABS
AAB9
AABC
AABD
AASO
AA91

AA94 ;

AAS7

00
0000
000u
0000
CDCY01
3E90

0303
3E20
D302
11CC3D
2101A8
012800
EDBO
3E60
D302
CDCDAA
110000
010008
78
D301
7A
F660
D302
DBOO
FEFF
C259AA
og

78

31
CA43AA
13
C32AAA
F5
CDC901
Fl
11083t
013300
2129AB
EDBO
CDCDAA
C3D7AA
ED4301AA
ED5303AA
3200AA
(DC901
11003E
013E00
215CAB
£DBO
ED5B03AA
£B

32203E

CDEZAA

00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
0us1u
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900

VIDEQ
SAVEA
SAVEBC
SAVEDE
SAVEHL

CONT

TSTAGN

FINISH

ERROR

EQu
DEFE
DEFU
DEFU
DEFY
CALL
LD

hardware

3C0O0H
0

00
00
00
01C9H
A,90H

(03),A

A, 20H

(02),A
DE,VIDEO+460
HL ,MSG1
BC,40

A,60H
(02),A
WAIT
DE,0000H
BC,2048
A,E
(01),A
A,D

60H
(02),A
A, (00}
OFFH
NZ,ERROR
BC

A,E

[
Z,FIHISH
CONT

DE,VIDEO+520
BC,51
HL,MSG2

WALT
DOS
{SAVEBC), BC
{SAVEDE}, DE
(SAVEA), A
01C9H
DE,VIDEO+512
BC,62
HL,MSG3

DE, (SAVEDE)
L

(VIDED+543), A
(VIDEO+544),A
DE, (SAVEDE)
DE,HL

A,L

CNVASC

ALK
(VIDED+545),A
AL

(VIDEQ+546),A

A, (SAVEA)
CNVASC

START OF SCREEN
{SAVE A REG RAM LOC
;SAVE BC REG PTR RAM LOC
;SAVE DE REG PTR RAM LOC
;SAVE HL REG PTR RAM LOC
;CLR SCREEN ROUTINE
;CONTROL WORD TO PPI

;TO MAKE PORT A=IN
PORTS B&C=0UT

sSEND IT OUT

;CMD WRD FOR PWR ON
JTURN ON PWR TO EPROM
;SCREEN POINTER

sPOINT TO CHECK MESSAGE
sNO. OF CHARS

SEND OUT MESSAGE

;CHD WRD FOR EPROM READ
JSEND IT OUT

;DISPLAY WAIT ROUTINE
;EPROM START ADDRESS

N0 OF BYTES

;EPROM ADDRESS LSB

;SEND TO B PORT

;EPROM ADDRESS MSB
;CONTROL BITS FOR READ
;SEND TO C PORT LO & HI
;READ EPROM DATA-PORT A
JIS 1T ERASED?

;IF NOT GOTO ERROR RTN
;DECREMENT BYTE COUNTER
;PUT NSB BYTE IN A

;O0R /LSB BYTE

;ALL BYTES PROCESSED?
INCR EPROM ADDRESS
;CONTINUE PROCESS

JSAVE A

;CLR SCREEN

JRECALL A

;SCREEN POINTER

iNO OF CHARS

JPOINT TO MESSAGE

JSEND IT OUT

;DISPLAY WAIT ROUTINE
;G0 BACK TO DOS

iSAVE BYTE COUNT

JSAVE ADDR POINTER

;SAVE EPROM DATA

;CLR SCREEN

JSCREEN POINTER

iNO. OF CHARS

JERROR ME SSAGE

PRINT ERROR MESSAGE
;RECALL ADDR POINTER
;PUT EPROM ADDR IN HL
;EPROM ADDRESS MSB

;G0TO ASCIT ROUTINE

;GET EPROM ADDR 1ST DIGIT
;ADDR IST DIGIT TO SCREEN
JEPROM ADDR 2ND DIGIT
;ADDR 2ND DIGIT TO SCREEN
JRECALL ADDR POINTER
;PUT EPROM LSB ADDR IN HL
JEPROM ADDR LSB

sCONV TO ASCII

sGET ASCII 3RD DIGIT
;ADDR 3RD DIGIT TO SCREEN
;GET ASCI1 4TH DIGIT
;ADDR 4TH DIGIT TO SCREEN
;RECALL EPROM DATA
SCONV TO ASCII

108

AA9A
AA9B
AAIE
ARIF
AAA2
AAAS
AAAB
AAAB

AAAD
AABO
AAB2
AABS
AAB7
AABA

AABC
AABF
AAC3
AACT
AACA

AACD
AADO
AAD1
AAD2
AAD3
AADG

AAD7

AAD9
AADB
AADD
AADF

AAE2
AAE3
AAES
AAE7
AAES
AAEB
AAEE
AAEF
AAFO
AAF2
AAFS
AAF6
AAF7
AAF9
AAFB
AAFE
ABQOO

ABO1
AB29
AB5C
AB9A
0000

7C
322C3E
70
32203t
11873t
219AAB
012700
EDBO

CD4900
FESY
CABCAA
FE4E
CAD7AA
18F1

3A00AA
ED4BOLAA
EDS5BO3AA
2A05AA
C339AA

0100FA
08
78
81
C2D0AA
C9

3E£9A

D303
3EAC
D302
C32040

aF
CB3F
CB3F
CB3F
CB3F
COFTAA
67

79
E6OF
CDF7AA
6F

€9
€630
FE3A
FAGOAD
€607
co

43
54
45
44

00910
00920
00930
00940
00950
00960
00970
00980

00990 ;
01000 ;

01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220

01230 ;

01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01610
01520
01530
01540
01550

00000 TOTAL ERRORS

hardware

ALH JGET DATA 1ST ASCII CHAR
(VIDEO+556),A ;0UT EPROM DATA 1ST DIGIT
A,L JGET DATA 2ND ASCII CHAR
(VIDEQ+557),A ;0UT EPROM DATA 2ND DIGIT
DE,VIDEO+647 JSCREEN POINTER
HL ,MSG4 JRETEST MESSAGE
BC,39 ;N0 OF CHARS

;SEND MESSAGE TO SCREEN

0049H ;CALL KEYBUARD SCAN RTN
59H .15 INPUT CHAR=Y?
Z,RESTOR .IF SO,RESTORE ALL REGS
4EH .1 CHAR=N?
7,008 JIF SO, END TEST
KYBRD JKEEP SCANNING
A, (SAVEA) JRESTORE
BC, (SAVEBC) . ALL
DE, (SAVEDE) ; REGISTERS
HL, (SAVEHL) ; AND:
TSTAGN CONTINUE TESTING

WALT
WALTL

CNVASC

TEST

BC,64000
BC
A,B
¢
NZ,HAIT1
A,9AH ;CMD WRD TO MAKE

;A&B PORTS=IN, C=0UT

(03),A SEND IT OuT
A,0AOH ;PREPARE FOR PWR OFF
(02),A ;TURN OFF PWR TO EPROM
4020H ;G0 BACK TO 0OS

C,A sSAVE HEX DIGITS
A SALIGN MI DIGIT

A

A

A

TEST SCNV TO ASCII

H,A ;SAVE FOR RETURN
A,C :RESTORE ORIGINAL
OFH SGET LO DIGIT

TEST CONV TO ASCII

L,A SAVE FOR RETURN
A,30H ;CONVERSION FACTOR
3AH JTEST FOR 0-9
M,TEST1 160 1F 0-9

A7 JELSE CORRECT FOR A-F

;RETURN
'CHECKING TO ENSURE EPROM IS FULLY ERASED'

'TEST COMPLETE..OK TO PROGRAM IF NO ERRORS DISPLAYED'

'EPROM CONTAINS DATA AT ADDRESS: H..READS:
‘DO YOU WISH TO CONTINUE TESTING ? (Y/N)'

..SHOULD READ F

109

AACO
ACO0
312
AAOO 3E80

AAO2 D303
AAQ4 3E20

AAGG6 D302
AAO8 CDCI01
AAOB 015900
AAOE 11923D
AA11 219CAA
AA14 EDBO
AA16 110000
AA19 010008
AA1C 2100AC
AALF C5
AA20 7E
AA21 D300

AA23 7B
AA24 D301
AA26 F5
AA27 E5
AA28 CD7DAA
AA28 7D
AA2C 32E83D
RAZF 7C
AA30 32E73D
AA33El
AA34 F1
AA35 7A
AA36 E6OF
AA38 F5
AA39 E5
AA3A CD7DAA
AA3D 7D
AA3E 32E63D
AA41 £
AA42 F1
AA43 F658

AA45 D302

AA47 CD62AA
AA4A 3E48

AA4C D302
AA4E 13
AA4F 23
AA50 C1

AA51 08
AA52 78

00100 ;
00110 ;
00120
00130
00140
00150 ;
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710

00720
00730
00740
00750
00760

hardware

Program Listing 3. PGMEPROM

i***********************************i********k*******

IS

;* THIS SOFTWARE WILL PROGRAM THE EPROM USING

3* B3FFH.

. w
't

PROGRAM WRITTEN BY ABEL J. TAPIA 06/06/81

>>>>>>PGMEPROMCKKLLK

* % % * * A *

KRR RH AR AR IR A AN ERE AR R AR RA TR Ak kR kh A hh ke

DATA
VIDEO

CONT

ORG
EQU
EQU
LD

ouT
LD

ouT

out
INC

INC
poP
DEC
LD

:* PROGRAM DATA RESIDING IN RAM LOCATIONS ACOOH TO
)

0AAOOH ;PROGRAM START
0ACOOH ;STARTING LOC OF RAM DATA
3C00H+530 ;START PT OF MSG ON SCRN
A,80H ;MODE O CNTRL WRD FOR PPI
;FOR A,B,C PORTS=OUTPUT
(03),A sWRD TO CNTRL REG IN PPI
A,20H ;CMD FOR EPROM PWR ON
sALL OTHER VOLTAGES OFF
(02),A ;WORD OUT TO PORT C
01C9H ;CLR SCREEN ROUTINE
BC,89D ;NO. OF CHARS
DE,VIDEO-128 ;SCREEN POINTER
HL , MSG1 sPOINT TO MESSAGE 1
i XFER MESSAGE
DE,0000 ;EPROM ADDRESS START
B(,2048 ;TOTAL NO. OF BYTES
HL,DATA ;POINT TO DATA
BC L SAVE BYTE COUNT
A, (HL) JGET PROGRAMMING DATA
(00),A +SEND DATA TO EPROM
IVIA PORT A
AE ;GET EPROM ADDR LSB
(01),A ;0UT TO EPROM VIA PORT B
AF JSAVE A
HL JSAVE HL
CRVASC sCONY TO ASCII
L JGET ASCIT LSB

A,
(VIDED-42),A
AH
(VIDE0-43),A
HL

;SEND IT TO SCREEN
sGET ASCII MSB
SEND 1T TO SCREEN
RESTORE HL

AF JRESTORE A

AD ;GET EPROM ADDR MSB

OFH 3MASK 4 MSBS TO=PORT C LO
AF 3 SAVE A

HL 3 SAVE HL

CNVASC

AL 3GET ASCIT MSB DIGIT

(VIDEO-44),A
HL

AF
58H

3SEND IT TO SCREEN
3RESTORE HL

sRESTORE A

3CMD WRD FOR PRGM START

;COMBINE W/ADDR MSB IN
JPORT C

(02},A

3 SEND OUT PORT C WORD

;TO START PROGRAMMING

TIMER
A,48H

;PROGRAM PULSE= 50 MS
;CTRL WRD TO ENSURE THAT:

;0/E BIT REMAINS HI
;THAT +25V STAYS ON
;AND PRGRM PULSE GOES LO

g1

HL
BC
BC
A,B

;TO STOP PROGRAM PHASE

;WORD QUT TO PORT C
JINCR EPROM ADDRESS
GET NEXT DATA BYTE

;RECALL LATEST BYTE COUNT
;DECREMENT BYTE COUNTER
;LOAD LSB IN A

110

AA53
AA54
AAS7

AA59
AASB

AA5D
AASF

AA62
AABS
AAGE
AAG7
AA68
AAGB

AA6C
AAGF
AA72
AA7S
AA78
AATA

AATD
AATE
AABO
ARB2
AAB4
AAB6
AABY
AABA
AABB
AABD
AASO
AA91
AR92
AA94
AA96

AA99 C

AASB
AASC

AABC
0000

Bl
C21FAA
3E9A

D303
3EAD

0302
C36CAA

01650E
08
78
B1
C265AA
c9

CDC9o1
11123€
21BCAA
011400
EDBO

C32040

00770 OR
00780 Jp
00790 LD
00800

00810 ouT
00820 LD
00830

00840

00850

00860 T
00870 Jp
00880 ;

00890 jeemmmmmmmnnnn
00900 ;

00910 TIMER LD
00920 TIMOUT DEC
00930 LD
00940 oR
00950 Jp
00960 RET
00970 ;

00980 FINISH CALL
00990 LD
01000 LD
01010 L0
01020 LDIR
01030 JP
01040 ;

01050 jeommmcmmacncs
01060 ;

01070 CNVASC LD
01080 SRL
01090 SRL
01100 SRL
01110 SRL
01120 CALL
01130 LD
01140 LD
01150 AND
01160 CALL
01170 LD
01180 RET
01190 TEST ADD
01200 cp
01210 Jp
01220 ADD
01230 TESTL RET
01240 ;

01250 MSG1 DEFM
01260 MSG2 DEFM
01270 END

00000 TOTAL ERRORS

hardware

C ;0R WITH MSB
NZ,CONT sKEEP GOING TILL DONE
A,9AH ;CMD WRD TO MAKE

;A8B PORTS=IN,C=0UT
(03),A ;SEND IT OUT
A,O0AOH ;CMD WRD TO SET PROGRAM

3PULSE = TO LO

3SET EPROM

0UT OF PGM MDE

;TURN OFF +25V & +5V PWR
(02),A JWORD OUT TO PORT C
FINISH ;TEST COMPLETE ROUTINE

BC,3685
BC
A,B
C
NZ, TIMOUT
01C9H ;CLR SCREEN
DE,VIDEO ;POINT TO SCREEN
HL , M5G2 yPOINT TO MESSAGE 2
B8C,20 ;NO. OF CHARS

3 SEND OUT MESSAGE
402DH ;GOTO DOS

'EPROM PROGRAMMING IN PROGRESS...

PROGRAMMING ADDRESS: H'
'PROGRAMMING COMPLETE'

AAQO

00100
00110
00120
00130
00140
00150

00170
00180
00190

Program Listing 4. VERIFY

« W AU ok e okt A T R e e e A e R Tk Wk e e e g e e e ko ok ke ek bk ko Rk ek ke ke ek

’
I
»
>

I3 3VERTFYLCKLLLK

3* THIS PROGRAM WILL VERIFY AN EPROM THAT HAS BEEN

;* PROGRAMMED BY COMPARING THE OUTPUTS WITH THE DATA
3* THAT WAS USED TO PROGRAM THE DEVICE. THE INPUT DATA
3* RESIDES IN MEMORY LOCATIONS ACOOH TQ B3FFH.

00160 ;*

Hd PROGRAM WRITTEN BY ABEL J. TAPIA

* % % % ¥ X *

07/05/81

ek kR AR KRR KA AAARK KRN RTRA R I h Rk Ak k ko khd Ak ke kb kkkw

ORG

OAAQOH

Program continued

111

3C00

AAOO CDC901
AAQ3 0000
AAD5 0000
AAQ7 0000
AAQ9 00
AAOA 3E90

AAOC D303
AAOE 3E20
AA10 D302
AA12 11D43D
AA15 2120AB
AA18 010F00
AA1B EDBO
AA1D 3E60
AALF D302
AAZ21 CDECAA
AA24 2100AC
AA27 110000
AAZA 010008
AA2D 78
AA2E D301
AA30 7A
AA31 F660
AA33 D302
AA35 DBOO
AA37 BE
AA38 (259AA
AA3B 0B
AA3C 78
AA3D B1
AA3E CA46AA
AA4] 23
AA42 13
AA43 C32DAA
AA46 F5
AA47 CDC901
AA4A F1
AA4B 11003E
AA4E 013D00
AAS51 212FAB
AAS4 EDBO
AAS6 C3F6AA
AAS59 ED4303AA
AA5D ED5307AA
AA61 2205AA
AA64 3209AA
AA67 CDCI0L
AAGA 11003E
AA6D 013200
AA70Q 216CAB
AA7 3 EDBO
AA75 ED5BO7AA
AA79 2A07AA
AA7C EB
AA7D 7C
AA7E CDO1AB
AAB1 7C
AAB2 320F3E
AA85 7D
AA86 32103E
AAB9 ED5BO7AA
AABD 2A05AA
AA90 EB
AAS1 7D
AAS2 CDOLAB
AA95 7C
AA9G 32113E

00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890

VIDEO

SAVEBC
SAVEHL
SAVEDE
SAVEA

CONT

TSTAGN

FINISH

ERROR

EQu
CALL
DEFW
DEFH
DEFY
DEFB
LD

hardware

3CO0H

(03),A
A,20H

(02),A
DE,VIDEO+468
HL ,MSG1
BC,15

A,60H
(02),A
WAIT

HL , OACOOH
DE, 00004
BC,2048
AE
(01),A
A,D

60H
(02),A
A, (00)
(HL)

NZ, ERROR
BC

A,B

C
Z,FINISH

DE,VIDEO+512
B8C,61
HL,M5G2

DOS
(SAVEBC), BC
(SAVEDE), DE
{SAVEHL), HL
{SAVEA), A
01C9H
DE,VIDEO+512

DE, (SAVEDE)
HL, (SAVEDE)
DE, HL

AH

CNVASC

AH
(VIDED+527),A
A,L

(VIDEO+528), A
DE, (SAVEDE)
HL, (SAVEHL}
DE, HL

AL

CNVASC

AH
(VIDEG+529),A

112

;START OF SCREEN
;CLR SCREEN ROUTINE
;BYTE COUNT SAVE LOC
:DATA PTR SAVE LOC
;ADDR PTR SAVE LOC
EPROM DATA SAVE LOC
;CONTROL WORD TO PP
TO MAKE A PORT=IN
;B&C PORTS =0UT
JSEND 1T OUT
;CMD WRD TO TURN ON PWR
TURN ON EPROM PR
JSCREEN POINTER
JPOINT TO VERIFY MESSAGE
sNO. OF CHARS
;SEND OUT MESSAGE
;CMD WRD FOR EPROM READ
;SEND 1T OUT
.DISPLAY WAIT ROUTINE
;IST INPUT DATA LOCATION
;EPROM START ADDRESS
NO OF BYTES
EPROM ADDRESS LSB
;SEND TO B PORT
EPROM ADDRESS MSB
;CONTROL BITS FOR READ
:SEND TO C PORT LO & HI
;READ EPROM DATA-PORT A
;1S IT SAME AS INPUT?
JIF NOT GOTO ERROR RTN
;DECREMENT BYTE COUNTER
PUT MSB BYTE IN A
JOR W/LSB BYTE
;ALL BYTES PROCESSED?
JINCR DATA POINTER
INCR EPROM ADDRESS
;CONTINUE PROCESS
JSAVE A
;CLR SCREEN
JRECALL A

;SCREEN POINTER
sNO OF CHARS
;POINT TO MESSAGE
:SEND IT OUT
;GO BACK TO DOS
SAVE BYTE COUNT
JSAVE ADDR PTR
JSAVE DATA PTR
SAVE EPROM DATA
:CLR SCREEN
;SCREEN POINTER

iNO. OF CHARS

:ERROR MESSAGE

;PRINT ERROR MESSAGE
;RECALL ADDR PTR
(RECALL DATA PTR

;PUT EPROM ADDR IN HL
JEPROM ADDRESS MSB
;GOTO ASCIT ROUTINE
sGET ADDR 1ST DIGIT
ADDR IST DIGIT TO SCREEN
JEPROM ADDR 2ND DIGIT
;ADDR ZND DIGIT TO SCREEN
;RESTORE ADDR PTR
RESTORE DATA PTR

PUT EPROM LSB ADDR IN HL
EPROM ADDR LSB

;CONV TO ASCII

;GET ASCII 3RD DIGIT
;ADDR 3RD DIGIT TO SCREEN

AA9S
AAJA
AA9D
AAAL
AAAS
AART
AAAA
AAAB
AAAE
AAAF
AAB2
AABS
AAB6
AABY
AABA
AABD
AABE
AAC1
AAC4
AACT
AACA

AACC
AACF
AAD1
AAD4
AADG
AADS

AADB
AADE
AAE2
AAE6
AAE9

AAEC

70
32123
ED5B07AA
2A05AA
3A09AA
CDO1AB

CD4300
FES9
CADBAA
FE4E
CAF6AA
18F1

3A09AA
ED4BO3AA
ED5BO7AA
2A05AA
C33BAA

0100FA

AAEF 0B

AAFO
AAF1
AAF2
AAFS

AAF6

AAF8
AAFA
AAFC
AAFE

ABO1
ABO2
ABO4
ABO6
ABO8
ABOA
ABOD
ABOE
ABOF
AB11
ABl14
AB1S
AB16
ABl8
ABIA

78
81
C2EFAA
c9

3E9A
0303
3EAD

D302
€32040

FA1FAB

00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340

01350 ;

01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590

LD

hardware

AL ;GET 4TH DIGIT
(VIDEO+530),A ;ADDR 4TH DIGIT TO SCREEN
DE, (SAVEDE) ;RECALL ADDR PTR

HL, {SAVEHL) SRECALL DATA PTR

A, {SAVEA) {RECALL EPROM DATA

CAVASC SCONV TO ASCII

A ,GET DATA 1ST ASCII CHAR
(VIDEG+543),A ;0UT EPROM DATA 1ST DIGIT
AL :GET DATA 2ND ASCII CHAR
(VIDEO+544),A ;0UT EPROM DATA 2ND DIGIT
HL, (SAVEHL) :RECALL DATA PTR

A, (HL) JGET INPUT DATA

CNVASC CONV TO ASCII

AH JINP DATA IST ASCII CHAR
(VIDEO+563),A ;SEND TO SCREEN

A,L JINP DATA 2ND ASCII CHAR

(VIDEO+564),A ;SEND TO SCREEN
DE,VIDEQ+647 ;SCREEN POINTER

HL ,M5G4 JRETEST MESSAGE
BC,39 :NO OF CHARS
JSEND MESSAGE TO SCREEN
YBOARD SCAN ROUTINE = - mmmmm s mm s e e
0049H JCALL KYBRD SCAN RTN
59H :1S INPUT CHAR=Y?
2,RESTOR ;IF SO,RESTORE ALL REGS
4EH ;1S CHAR=N?
7,008 JIF SO, END TEST
KYBRD JKEEP SCANNING
A, {SAVEA) JRESTORE
BC, (SAVESC) DAL
DE, (SAVEDE) ; REGISTERS
HL , {SAVEHL) ; AND:
TSTAGN JCONTINUE TESTING

CNVASC

TEST

LD
SRL
SRL
SRL
SRL
CALL
LD
LD
AND
CALL
LD
RET
ADD
cp
JP

BC,64000
BC
A,B
[
NZ,WAIT1
A,9AH ;CMD WRD FOR
JAZB PORTS =IN,C=0UT
(03),A JSEND IT OUT
A,CAOH ;CMD TO TURN OFF ALL
(02),A JPHR TO EPROM
4020H ;GO BACK TO 0OS
VERT TO ASCIT ROUTINEm---cccmm it
C,A 3 SAVE HEX DIGITS
A JALIGN HI DIGMT
A
A
A
TEST JCNV TO ASCIT
H,A ;SAVE FOR RETURN
AL JRESTORE ORIGINAL
OFH ;GET LOW DIGIT
TEST ;CONV TO ASCII
L,A JSAVE FOR RETURN
A,30H 3 CONVERSION FACTOR
3AH JTEST FOR 0-9
M,TESTI ;60 IF 0-9 Program continued

113

hardware

AB1D €607 01600 ADD A7 JELSE CORRECT FOR A-F
ABIF C9 01610 TESTI RET JRETURN
01620 jmmmmmmmmmmmm e e ams s s m s e e
AB20 56 01630 MSGI DEFM 'VERIFYING EPROM'
AB2F 56 01640 MSG2 DEFM ‘VERIFICATION COMPLETE....EPROM IS OK IF NO FAILURES DISPLAYED
ABSC 46 01650 MSG3 DEFM 'FAILED ADDRESS: H.....READS:SHOULD READ: '
ABAL 44 01660 MSG4 DEFM 'DO YOU WISH TO CONTINUE TESTING ? (Y/N)
0000 01670 END

00000 TOTAL ERRORS

114

HOME APPLICATIONS

Autocost
Celestial Software
Your Personal Expense Account

115

- HOME APPLICATIONS

Autocost
by Jim Heid

ransportation costs are rising at a frantic pace. The price of gasoline

has nearly quadrupled since 1971, and a new sub-compact car_costs
more than twice as much as it would have 10 years ago. Many consumers
have no choice but to finance a new car over a four or five year period.
Regular maintenance and sensible driving are vital if the owner expects the
car to outlive its payment book.

The Autocost Program

Autocost (see Program Listing) is a Disk BASIC program which maintains
gas mileage and maintenance information, displays and, if desired, prints a
detailed gas mileage and maintenance cost report. The automobile expense
report (see Figure 1) displays the number of miles driven to date, total
gallons of gas used, highest miles per gallon (MPG) recorded, lowest MPG
recorded, average MPG, number of times that the tank was filled, and the
total fuel expense, as well as all maintenance items done, the date each one
was done, the cost of each one, and the maintenance cost per mile.

The version of Autocost printed here runs on a 32K, lowercase TRS-80
Model I with one disk drive under Apparat’'s NEWDOS/80, Version 1.0.
Several small modifications make it compatible with NEWDOS 2.1, NEW-
DOS/80 Version 2, or TRSDOS and with uppercase-only machines. The
program has a minimum of multi-statement lines so that its logic and flow
are easy to understand and to make it easy to modify.

Running under TRSDOS or NEWDOS 2.1

To run under TRSDOS or NEWDOS 2.1, enter the program as listed,
then make the following changes.
1) Delete lines 1040-1070.
2) If the machine has lowercase capability and uses a Radio Shack lowercase
driver, change line 1190 to:
1190 POKE 16409,0

3) If the machine is uppercase only, delete lines 1160-1200.

4) If you wish to keep records for more than one car, EDIT lines 1300 and
1310, and delete the REMs.

5) EDIT line 1550. Delete the CMD“BREAK,Y”.

6) Save the altered version of the program to disk. You may wish to save the
original version, should you switch operating systems at a future time.

117

home applications

AUTOMOBILE EXPENSE REPORT—07/05/81

For: 81 Toyota Tercel

Miles driven todate. 53704

Total galions used. e 172,993
Highest MPG recorded. 38.7618
Lowest MPG recorded. 22,4026
Average miles per gallon. 30.5822

No. of times tank filled 18

Total fuel expense. $230.24

Maintenance Report:

Maintenance Item Date Done Cost

Oil change & filter 06/14/81 $ 14.52

New wiper blades 06/14/81 $ 4.35

Oil change & filter 07/01/81 $ 15.00

Total Maintenance Cost:

$ 33.87

Maintenance Cost per mile:

$ 001

Figure 1. Automobile expense report

Running under NEWDOS/80, Version 2.0
Make the following changes to run the program under Version 2.0.
1) If the machine has lowercase capability, EDIT line 1190 to read:
1190 CMD“LC,Y”

2) If it is an uppercase only machine, delete lines 1160-1200.

3) If you wish to keep records for more than one car, EDIT lines 1300 and
1310 and delete the REMs.

4) Save the altered version of the program. You may wish to have the
original version, should you change operating systems at a future time.

Running under NEWDOS/80, Version 1

1) If you machine is a lowercase, 32K machine, EDIT line 1190 to read:
1190 POKE(&HBFB2,&H20)

2) If itis a lowercase, 48K machine, EDIT line 1190 to read:
1190 POKE(&HFFB2,&H20)

3) If you have an uppercase-only machine, DELETE lines 1160-1200.

118

home applications

Using the Program

When you run Autocost, enter the date in DD/MM/YY format. Be sure to
enter the date correctly, because the program does not check for impossible
day or month numbers. (Example: If it is August 12, 1981, type 08/12/81
and press ENTER.) At this point, the main menu appears (Figure 2). The
menu is the branch point to each different area of the program. Your
response determines what the program does. You see a list of numbered op-
tions, followed by the word Choice? and a white square. The white square
means that you must respond by striking only one key. You do not need to
press ENTER when the white square appears.

Starting Out

The first time you run the program, you need to tell the computer a few
things about your car. Do this by selecting option 4, Start New Data Set. The
computer asks you several questions. The first asks you to type in the year
and name of the car (for example: 81 Ford, 73 Dodge). The next question
asks for the car’s current mileage. Enter the mileage with no commas be-
tween any digits.

Next, the computer asks you if the car is new. If it is not new, you are
warned that any maintenance cost data will not be accurate since you've
already had work done on the car that was not recorded. Finally, it asks you
whether the data you entered before is correct. If it is, strike Y. The data you
have entered is saved on disk. If you have entered something incorrectly,
strike N and reenter the data. If you've changed your mind about the whole
thing, strike A (for abort) to return to the main menu.

* AUTOCOST 1.0 *
(1) Enter Fuel Data
(2) Enter Maintenance Data
(3) Print Report(s)
(4) Start New Data Set
(5) End Program Run
Choice?

Figure 2. The main menu

Entering Fuel Data

To maintain gas mileage figures, first fill your car’s gas tank. Wait until
your tank is about 3/4 empty before filling it again. Write down the current
mileage, the number of gallons that just went into the tank, and the price
per gallon.

119

home applications

Now select option 1 of the main menu, Enter Fuel Data. After you strike a
1, the screen will say, DISK CONTAINING DATA FILES MUST BE IN
DRIVE #0. Strike ENTER to begin, any other key to exit. Make sure that the
same disk you used when you started the new data set is in drive 0, then
strike the ENTER key. The computer reads your car’s data, shows the
mileage at your last fill-up, and asks the following questions:
@ MILEAGE READING AT THIS FILL-UP ? (Enter the mileage reading
that you just wrote down, without commas. Example: 3,453.8 miles would
be entered as 3453.8.)
@ GALLONS PURCHASED AT THIS FILL-UP ? (Enter the number of
gallons you just bought.)
®PRICE PER GALLON ? (Enter the price per gallon that you just paid,
without dollar signs. Example: $1.50 would be entered as 1.50.)
The computer now asks, IS ABOVE DATA CORRECT (Y/N/A)? Check
what you entered carefully. If there is an error, strike N and reenter the
data. If everything is correct, strike Y. If you're frustrated and need a drink,
strike A (for abort) to return to the main menu with no changes made.

If everything was correct, and you struck Y, the screen now shows:

(Type of car) got (20) miles per gallon,
using (5) gallons. Miles driven: (100)
Cost per mile: ($0.04)

Total Fuel Cost to Date: ($10.00)

The figures in parentheses are different for each car. At the same time, the
disk drive activates, saving the newly updated data files. When you are
finished looking at the display, strike any key to return to the main menu.
The above steps are easier to do than they are to describe. Just remember to
record your mileage, gallons bought, and price per gallon each time you fill
the tank.

Recording Maintenance Data

Entering maintenance data is much like entering fuel data. Begin by
selecting option 2 from the main menu, Enter Maintenance Data. Make sure
your car disk is in drive 0, then press ENTER. The computer reads your car’s
data files and responds by asking:

@ ENTER DATE OF MAINTENANCE (DD/MM/YY)? (Enter the date
that the work was done. Example: If the work was done on June 20, 1981,
enter 06/20/81.)

® ENTER SUMMARY OF WORK DONE (35 CHAR. MAXIMUM) ? (Type
a short description of what was done. Your description must be under 35
characters—if it is longer, the computer asks you to enter it again. Examples
of descriptions include oil change and filter, new tires, flush coolant system.)
@ ENTER COST OF MAINTENANCE ? (Enter the cost of the

120

home applications

maintenance, using no commas or dollar signs. Example: If the work cost
$45.36, enter 45.36.)

The computer asks if the data is correct. If what you entered is incorrect,
type N and reenter the data. If the information is correct, type Y. If you've
decided to sell the car and buy a horse, type A (for abort), and you return to
the main menu with no changes made. If the data was correct and you reply
with Y, the computer updates the maintenance data file and returns to the
main menu.

Viewing Reports

One of the great advantages of record keeping by computer is that de-
tailed, concise reports can be displayed or printed at any time. Option 3,
Print Reports, allows this. After you type a 3, a smaller menu appears on the
screen (see Figure 3). This is a sub-menu, the branch point for the report
generating modules of Autocost.

The first selection of the sub-menu is 1, Print Expense Report. This
module reads the data files, computes highest, lowest, and average gas mile-
age, displays cost per mile, fuel cost to date, maintenance work, dates and
cost of maintenance, and maintenance cost per mile (shown in Figure 1).
Note: The report will display meaningless figures if you call it up after making
your first fuel consumption entry. There must be more than one entry on the
disk to display an accurate report.

To view these reports, type a 1 from the sub-menu. The first report (fuel
consumption) is displayed. There is a line at the bottom of the screen saying
END OF GAS REPORT—STRIKE <P> TO PRINT, <N> FOR NEXT
REPORT. If you want a printout of the fuel report, strike P. The program
warns you if your printer is not ready. If you do not want a printout of the
fuel report, press N (for next report). The program then displays the
maintenance data for your car: maintenance item, date done, cost, total
maintenance cost, and maintenance cost per mile, If there are more than 11
maintenance items, the display pauses until you strike N. At the end of the
report, you may obtain a printout by striking P. Again, you are warned if
your printer is not ready. To return to the main menu, strike X.

** DISK CONTAINING DATA FILES MUST BE IN DRIVE #0
REPORT PRINTING MODULE

1. Print Expense Report
2. Print Gas Mileage Graph
3. Return to Menu

Choice?

Figure 3. The sub-menu

121

home applications

Option 2 of the sub-menu, Print Gas Mileage Graph, displays your car’s
gas mileage records in a bar graph form. To view the graph, strike a 2 from
the sub-menu. The data is read from the disk, and the graph is displayed. To
the right of each bar is the exact gas mileage figure. If there are more than 15
figures to display, the display pauses until you strike an N (for next screen).
When all of the entries have been shown, you may either see the entire graph
again by striking A, or you may return to the main menu by striking X.

Option 3 of the sub-menu returns you to the main menu. Use this if you
selected (3) Print Report(s) from the main menu by mistake.

Ending the Run

Select main menu option 5 only when you wish to end the entire program
run. For NEWDOS/80 users, option 5 is the only way to regain control of the
computer since this program automatically disables the BREAK key. For
users of other operating systems, the use of the BREAK key to exit the pro-
gram is discouraged.

To end the program run, strike a 5. Under the menu selections, you see
VERIFY END ? (Y/N). If you wish to end the run, strike Y. The computer’s
string space is reallocated to 50, the screen clears, NEWIDOS/80 reenables
the BREAK key, and the computer returns to the command mode. If you do
not wish to end the run, strike an N, and the main menu reappears.

Inside Autocost

This information tells how the program operates and how to modify or
customize it. This section is also of value to the novice programmer since it
contains many techniques useful in any program.

Autocost is written in Disk BASIC, using a minimum of multi-statement
lines. All line numbers contain four digits, and all statements are indented,
resulting in an easy-to-read program listing. It uses no variable definition
statements (DEFSTR, DEFINT). They tend to make a listing harder to
understand, since you must either remember which variables are what type,
or you must constantly refer to the definition statements. The program, as
written, fits and operates well within 32K of memory, but could be com-
pressed considerably by combining statement lines and deleting REMarks.
Table 1 lists the variables Autocost uses.

Lines 1040--1070 disable the BREAK key in NEWDOS/80 to prevent an
awkward exit that could lead to a loss of data. The routine in lines
1080-1150 eliminates the need to set the date under DOS. It first checks to
see if you have already entered the date. This is done by PEEKing at location
16454 (decimal). If the value is greater than zero, the routine assumes that
the date has been entered and jumps to line 1160.

If PEEK(16454) is zero, the computer asks you to input the date into
string variable D$. The string is then peeled apart, with the left two

122

home applications

Name Type Use

A Single-precision Total of MPG values

AG Single-precision Average MPG

CM Single-precision Current mileage

CPM Single-precision Cost per mile

D String Current date

DD String array Date done (maintenance)

F1 String Filespec #1 (GASFILE/DAT)
F2 String Filespec 42 (MAINTFLE/DAT)
GU Single-precision Gallons used

K String INKEY$ keystroke string
MC Single-precision array Maintenance item cost

MD Single-precision Miles driven

MI String array Maintenance item

MPG Single-precision array Miles per gallon

N1 Single-precision Number of fill-ups

N2 Single-precision Number of maintenance items
NM Single-precision New mileage (for MPG data)
P String Used in report printing

PG Single-precision Price per gallon

T Single-precision Temporary storage (sort)

TC String Type of car

TFC Single-precision Total fuel cost (to date)

TGU Single-precision Total gallons used

TM Single-precision Total maintenance cost

X Single-precision General work variable

X1 Single-precision General work variable

X2 Single-precision General work variable

Z Single-precision General work variable

Table 1. Variable list

characters (the day) POKEd into location 16454, the right two characters
(the year) POKEd into 16452, and the middle two characters (the month),
going to location 16453. At these three locations, the date is stored and ac-
cessed by the TIME$ function.

Lines 1160--1200 assure that the NEWDOS/80 lowercase driver is set to
capitals and lowercase. Since all string comparisons in Autocost require
lowercase input, it is vital that the lowercase driver be enabled.

Lines 1210-1280 clear 1000 bytes of string space, dimension the four ar-
rays used to 35, and assign the two filenames you will use for data files. If
you have more than 32K of memory you may want to increase the DIMen-
sioning of arrays MI$(X), DD$(X), MC(X), and MPG(X). As written, the
dimension of 55 will allow the data from a total of 55 fill-ups and
maintenance entries. Lines 1300 and 1310 are for users who want to keep
records for more than one car. If you delete the REMs, the program prompts
you for two filenames.

123

home applications

The code in lines 1330-1470 displays the main menu and branches to an
INKEY$ subroutine that waits for keyboard input. Upon receiving a
keystroke, the code tests the numeric value of K$. If it is 0 or greater than 5,
the menu appears (line 1440). If it is between 0 and 5, control branches to
the appropriate routine (line 1460).

Lines 1480-1560 make up the verify end routine. This routine is called if
you strike a 5 from the main menu. It asks you to verify the end by replying Y
or N, If the reply’is néither a Y nor an N, the program loops back toline 1500
(VERIFY END ? Y/N) until you give a legal response. If the responseisan N,
control proceeds back to the main menu. If the response is a Y (end), the
screen clears, a token CLOSE is given, string space is CLLEARed to 50 bytes,
the BREAK key is reenabled, and the computer returns to the command
mode (line 1550).

Lines 1570-2260 make up the fuel consumption module. Lines 1590-1670
allow you to return to the main menu if you accidentally struck 1. Since you
must press ENTER to begin, entry into this module is a two-step process,
eliminating the chance of getting there by mistake.

Lines 17001820 input the data needed to compute gas mileage. Lines
1830-1880 provide yet another exit if you have entered the data incorrectly
or want to return to the menu. The message IS ABOVE DATA CORRECT
(Y/N/A) ? is displayed. If you respond N, the program returns to line 1700,
requiring reentry of the data. If you respond A, the program exits this
module and returns to the main menu with no changes made in the data
files. If you respond Y, execution continues. Responding with any other key
causes a loop back to 1830.

Lines 1890-2120 compute the number of miles driven (MD), the miles per
gallon (MPG), the cost per mile (CPM), the total fuel cost (TFC), and the
total number of gallons used (TGU). The current mileage (CM) is updated,
and the MPG subscript (variable N1) is increased by one. Lines 21302260
display the car’s current gas mileage figures and write the new data files to
disk.

The maintenance data module (lines 2270-2630) operates much the same
as the fuel consumption module. Lines 2290--2360 provide an exit if you ac-
cidentally struck a 2. Line 2370 branches control to the file read subroutine
which reads previously entered data.

Lines 2390-2520 input the necessary data about the current maintenance
item. Line 2420 asks you to enter the date of maintenance into string array
DD$(X). Note that the array’s subscript (N2) does not increase by one at this
point. This is to allow for a possible exit, should you decide to abort to the
main menu.

Line 2430 requests a 35-character or fewer description of maintenance
work done. This data is input in line 2440 to string array MI$(X). The length
of the description (in MI$(X)) is tested at line 2460. If the length is legal

124

home applications

(fewer than 36 characters), execution jumps to line 2510. If the length is over
35 characters, an error message appears (lines 2470-2480), and execution
loops back to 2430.

Line 2510 inputs the cost of the maintenance item into array MC(X).
Again note that the subscript variable (N2) does not increment by one, but
has one added to it within the subscript. Lines 2530-2600 ask if the input
data is correct. As in the fuel consumption module, you have a chance to
abort to the main menu with no changes in the data files.

The program reaches line 2620 only if you respond Y to ISABOVE DATA
CORRECT (Y/N/A) ? This line adds one to the subscript variable, updates
the maintenance cost to date (variable TM), writes the updated data files,
and returns control to the main menu.

Lines 2640-2780 display the sub-menu that is the branch point to the
report printing modules. Line 2760 tests the numerical value of K$ (the
string variable used in the INKEY$ subroutine), and branches to the ap-
propriate routine. The logic in this section of code is identical to that of the
main menu.

Lines 2790-3420 generate the fuel consumption report. After th.e fuel data
is read from disk (line 2810), lines 2850-2920 sort the data in the miles per
gallon array, MPG(X), from lowest to highest, using a basic Shell sort.

Lines 2940-2970 compute the average miles per gallon by totaling all the
MPG entries (lines 2940-2960) and dividing the total by the number of en-
tries (line 2970).

Lines 2090-3120 display the gas mileage report on the screen. Lines 2990
and 3010 use the STRINGS function to print a row of hyphens on either side
of the report title. Line 3010 uses the LEFT$ function to obtain the date.

Lines 3040-3110 print the report information. The item descriptor (such
as miles driven to date, total gallons used) is printed, followed by a row of
periods, then the actual value. The periods, or leaders, serve to lead the eye
across the line, resulting in an easy-to-read report.

The maximum line width of the report is 55 characters. For a pleasing
visual appearance, the left and right sides of the report should be flush with
the 55-character measure. To accomplish this you must know how many
digits will be in the data, how long each item descriptor is, and how many
leaders to put between the end of the item descriptor and the beginning of
the figures.

Make seven the maximum number of digits in the data. You must also in-
clude a period for decimal values. This sets our figure length at eight. If you
subtract eight from the total measure (55), you get 47. Thus you have to
print the item descriptor and enough leaders to fill 47 spaces. This brings the
leaders to the start of the figures and also prints the figures flush right on the
55-character measure.

The only problem now is computing how many leaders to print on each

125

home applications

line. The program accomplishes this in the following steps:

1) The program assigns the item descriptor to string variable P$.

2) The program finds the length of P$ (the item descriptor) and subtracts it
from 47 (total measure minus eight for figures) then assigns the difference to
variable X.

3) It changes P$ to equal the original item descriptor plus X number of
periods (X being the difference between the length of the item descriptor
and the total width of 55 characters).

4) Finally it prints the new P$, then the figures.

While this may sound complex, the code needed to accomplish it is quite
simple. To help you understand it, here is an example:

10 REM Demonstrator of “leader” routine
20 REM Maximum line width =55

30 REM

40 P$ =“Here is item descriptor”

50 X =47 - LEN(P$)

60 P$ =P$ + STRING$(X,“.”)

70 PRINT P$; “12345.67"

80 PRINT : END

In the Autocost program, a subroutine (lines 5130-5170) adds the leaders
to P$. Other than that, the logic is identical to the above demonstration
program.

Lines 3130-3170 display a message at the bottom of the screen, giving
you the option to line print the gas mileage report or simply move on to
display the maintenance data report. If you choose not to print the gas
mileage report, execution jumps to line 3430.

Lines 3190-3410 print the MPG report on the line printer. Lines
3210-3240 check the status of the line printer. Line 3210 PEEKs the
printer device control block, address 14312 (decimal). If the value found
there is less than 127, the printer is off-line or not connected. The screen
displays the message PRINTER NOT READY! and the program loops back
to line 3130.

If the value of 14312 is 127 or greater, the screen displays <<PRINT-
ING>>, and the report is printed, using code identical to that which
printed the report on the screen. After the report is printed, the program
automatically displays the maintenance report.

Program lines 3430-3950 generate the maintenance data report. Lines
3450--3690 display the report on the screen. Line 3540 sends execution to a
screen pause subroutine if the screen is full. Press N to see the next screen;
press X to exit to the main menu.

Lines 3700-3950 contain the code needed to line print the maintenance
report. Lines 3720-3750 test the status of the printer in the manner de-
scribed above. Lines 3770-3950 print the report, again using the same code

126

home applications

as the display. After the report is printed, the program returns to the main
menu.

Lines 3970-4170 display a bar graph of the car’s gas mileage data. Line
3990 sends execution to the file read subroutine. After the data is read, a
FOR-NEXT loop is initialized (line 4020). Line 4050 uses the STRING$
function to display a bar of graphics characters (character 140) to the length
of the gas mileage figure that X points to. That mileage figure is then printed
to the immediate right of the bar. For example, assume that X (the work
variable in the FOR-NEXT loop) equals 3. The current MPG entry in the ar-
ray MPG(3) equals 24.323 (miles per gallon). Line 4050 uses the integer por-
tion of 24.323 to display a bar of 24 white blocks. The current MPG value
appears immediately to the right of that bar. In this case, the value is 24.323.

Line 4030 sends execution to the screen pause subroutine if the screen is
full of lines. When the entire graph has been displayed, you may either see it
from the beginning by striking A or return to the main menu by striking X.

Lines 4190-4490 make up the data initialization module. The program
inputs the necessary data in lines 4210-4260. Lines 4260-4380 print a warn-
ing about data accuracy, as described earlier. Lines 4400-4490 ask if the
newly entered data is correct. If the response is Y (line 4450), the new data
files are written, and the program returns to the main menu. If the response
is A (line 4460), the program aborts to the main menu without making
changes in the data files. If the response is N, execution loops back to line
4990 where you must reenter the data.

The rest of the program consists of subroutines. Lines 4510-4750 open
and write the two sequential data files to disk. Sequential files are used for
their simplicity, and because random access files offer no advantage to this
program’s execution. Lines 4550-4560 open the two files under the names
contained in variables F1$ and F2$. Line 4580 writes the data to the begin-
ning of file 1 (GASFILE/DAT, unless you change it). The current mileage
(CM), total gallons used (TGU), number of fill-ups (N1), cost per mile
(CPM), and total fuel cost (TFC) are then written.

Line 4600 writes the number of maintenance items (N2) to the beginning
of file 2 (MAINTFLE/DAT, unless changed). Lines 4620-4650 use a FOR-
NEXT loop to write each maintenance item description (MI$(X)), each date
done (DD$(X)), and the cost of each maintenance item (MC(X)).

Lines 4670-4690 use a FOR-NEXT loop to write each MPG value
(MPG(X)) to file 1. Line 4710 writes the miles driven (MD) and the total
maintenance cost (TM) to file 2. Line 4730 closes both files, and line 4740 re-
turns execution to the main program. Lines 4760-4960 open and input the
data from the files in the same order and to the same variables as it was
written.

Lines 4980-5070 make up the screen pause subroutine. STRIKE <N>
FOR NEXT SCREEN, <X> TO EXIT, appears at the bottom of the screen.

127

home applications

Execution then jumps to the INKEY$ subroutine until you strike a key. If the
keystroke is N, the screen clears, and control returns to the main program
(line 5050). If the keystroke is anything other than X (line 5060), execution
loops back to display the message (line 5000). If the keystroke was X, execu-
tion is turned over to the main menu.

Lines 5090-5120 make up a conventional INKEY$ subroutine. Variable
K$ is assigned to INKEY$. If you have not struck a key (K$ equals null or
K$ =), execution loops back to the INKEY$ statement. If you did strike a
key, execution returns to the main program, where the contents of K$ can be
tested for certain responses. Lines 5130-5170 in the report generating
module determine how many periods, or leaders, to display.

Summing It Up

The Autocost program is a good example of how simple programming
techniques can work together to make a useful piece of software. The style of
the program—its single-statement, indented lines and remarks—make for
clearer understanding of its operation, and make modifications or customiz-
ing much simpler.

128

1000
1010
1020
1030
1040
1050
1060

home applications

Program Listing
Encyclopedia
REM Loader"

REM “AUTOCOST" - VERSION 1.1
REM COPYRIGHT 1981 BY JIM HEID

REM DISABLE BREAK (DELETE IF ON TRSDOS OR NEWDOS+)
CMD"BREAK, N"

1070

1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550

REM INPUT DATE AND POKE INTO TIMES

IF PEEK(16454) >0 GOTO 1160

CLS : PRINTG384,;:INPUT “ENTER DATE (DD/MM/YY)"; D$
POKE 16454, VAL{LEFT$(D$,2))
POKE 16452, VAL(RIGHT$(DS,2))
POKE 16453, VAL(MID$(D$,4,2))

REM TOGGLE U/L TO LOWER CASE (DELETE IF U.C. ONLY)
REM (THIS ADDRESS FOR NEWDOS/80 VER. 1, 32K}

POKE (SHBFB2), (8H20)

REM *xkx INITIALIZE & ASSIGN FILE NAMES

REM (IF MANUAL INPUT OF FILENAMES IS DESIRED,
REM DELETE LINE 1280, THEN DELETE THE "REMs"
gEM FROM LINES 1300 and 1310)

CLEAR 1000
DIM MI$(55), DD$(55), MC(55), MPG(55)
F1$="GASFILE/DAT" : F2$="MAINTFLE/DAT"

REM CLS:INPUT"ENTER FUEL DATA FILESPEC"; F1%
REM INPUT"ENTER MAINTENANGE DATA FILESPEC"; F2§
)

REM MENU & BRANCH

CLS : PRINT@280, “* AUTOCOST 1.1 *" : PRINT
PRINT@404, "(1) Enter Fuel Data"

PRINT TAB(20) “(2) Enter Maintenance Data"
PRINT TAB(20) "(3) Print Report(s)

PRINT TAB(20) “(4) Start New Data Set
PRINT TAB(20) “(5) End Program Run

PRINT@768+25, "Choice? * ;CHR$(143)
GOSUB 5090
K = VAL{K$) : IF K=0 OR K >5 THEN 1330

ON K GOTO 1570, 2270, 2640, 4190, 1480

REM VERIFY END?
)

PRINTE768+22, “VERIFY END? (Y/N) “; CHR$(143)
GOSUB 5090

IF K$="n" THEN 1330

IF K$<>"y" THEN 1500

CLS : CLOSE : CLEAR 50 : CMD"BREAK,Y" : END

1560 '

1570
1580
1590
1600
1610
1620
1630
1640
1650

REM ENTER FUEL DATA

CLS : PRINT®275, “"Fuel Consumption Module

PRINT@391, "DISK WITH PROPER DATA FILES MUST BE IN "
PRINT "DRIVE #0."

PRINT@S519, "Strike <ENTER> to begin, any other key ";
PRINT "to exit “;

PRINT CHR$(143)

GOSUB 5090 Program continued

129

home applications

1660 IF ASC(K$) <> 13 G0TO 1330

1670

1680 GOSUB 4760 'FILE READ
1690

1700 CLS : PRINT®256, “Gas Mileage Data Module"
1710 PRINTO384, "Mileage reading at last fitl-up: "; CM
1720 PRINT : INPUT “"Mileage reading at this fill-up" ; NM

1730 IF NM > CM THEN GOTO 1770

1740 PRINT®"*** ERROR! *** MI| EAGE READING MUST BE"
1750 PRINT"HIGHER THAN READING AT LAST FILL-UP!™

1760 GOTO 1720

1770 INPUT "Gatlons purchased at this fill-up” ; GU
1780 IF GU > 1 THEN GOTO 1810

1790 PRINT"*** ERROR! *** RE-ENTER NUMBER OF GALLONS!"
1800 PRINT : GOTO 1770

1810 INPUT "Price per gallon"; PG

—
os]
N
o

1830 PRINT@832, "IS ABOVE DATA CORRECT (Y/N/A)? ";CHR$ (143)
1840 GOSUB 5090

1850 IF K$="n" THEN 1700

1860 IF K$="a" THEN 1330

1870 IF K$<>"y" THEN 1830

1880 '

1890 REM Following module calculates miles
1900 REM per gallon using this process:
1910 REM

1920 REM MILES DRIVEN = NEW MILAGE - MILEAGE @ LAST FILL
1930 REM MPG = MILES DRIVEN/GALLONS USED

1940 REM COST/MILE = PRICE PER GALLON/MILES DRIVEN
1950 REM TOTAL FUEL COST (TFC) = TFC + (PG * GU)
1960 REM TOTAL GALLONS USED (TGU) = TGU + GU

1970

1980 MD = NM - CM

1990 MPG = MD / GU

2000 CPM = (PG * GU) / MD

2010 TFC = TFC + (PG * GU)

2020 TGU = TGU + GU

2030

2040 REM UPDATE CURRENT MILEAGE TO NEW VALUE
2050 REM (CM = NM)

2060 REM INCREASE MPG SUBSCRIPT BY 1 AND ASSIGN
gggg iltEM NEW MPG VALUE (N=N+1 : MPG({N)=MPG

2090 CM = WM
2100 N1 =Nl +1 : MPG(NL) = MPG

2110 '

2120 '

2130 REM PRINT MPG FIGURES FOR THIS RUN
2140 REM AND SAVE DATA TO DISK.

2150 '

2160 CLS : PRINT@320, TC$; " got" ; MPG ; "miles per gallon,
2170 PRINT"using"; GU ; "gallons. Miles driven: Y. MD

2180 PRINT"Cost per mile: “;: PRINT USING "$##.##"; CPM
2190 PRINT"Total Fuel Cost-to-Date: “;

2200 , PRINT USING “$####.#4"; TFC

2220 GOSuB 4510 'WRITE NEW FILES
O v

2240 PRINT@640, "<< COMPLETED - HIT ANY KEY FOR MENU >>"
2250 , GOSUB 5090 : GOTO 1330

2270 REM ENTER MAINTENANCE DATA

2290 CLS : PRINT@273, "Maintenance Data-Entry Module”

2300 PRINT@391, "DISK WITH PROPER DATA FILES MUST BE IN “;
2310 PRINT "DRIVE #0."

2320 PRINT@519, “Strike <ENTER> to begin, any other key ";
2330 PRINT "to exit “; CHR$(143)

2340 GOSUB 5090 'get keystroke
2350 IF ASC(K$) <> 13 GOTO 1330

130

2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600

2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810

t

home applications

GOSUB 4760 'file read

CLS : PRINT@256, "Maintenance Data Module"
PRINT

INPUT"Enter date of maintenance (DD/MM/YY) "; DD$(N2+1)
PRINT "Enter summary of work done (35 char. maximum):"
PRINT : LINEINPUT MI${(N2+1)

IF LEN(MI${N2+1)) <36 GOTQ 2510

PRINT:PRINT “** ERROR! DESCRIPTION MUST BE UNDER 35 “;
PRINT “CHARACTERS! ** * : PRINT
GOTO 2430

INPUT “Enter cost of maintenance" ; MC(N2+1)

PRINT:PRINT "1S ABOVE DATA CORRECT? (Y/N/A) " CHR$(143)
GOSUB 5090 'Get keystroke
IF K$="y" THEN GOTO 2620 'SAVE NEW FILE
IF K$="a" THEN GOTO 1330 ‘abort
IF K$<O"n" THEN GOSUB 5090 'bad entry

CLS : PRINT@128, "RE-ENTER THE DATA:"
GOTO 2400

N2 = N2+1 : TM = TM + MC(N2) : GOSUB 4510 : GOTO 1330
REM PRINT REPORTS

CLS : PRINT@128+8, "** DISK CONTAINING DATA FILES "
PRINT "MUST BE IN DRIVE #0"

PRINT@384+20, "REPORT PRINTING MODULE"

PRINT

PRINT TAB(20) “1. Print Expense Report"”

PRINT TAB(20) “2. Print Gas Mileage Graph

PRINT TAB(20) "3. Return to Menu

PRINT : PRINT TAB(20) "Choice? "; CHR$(143)

GOSUB 5090 'GET KEYSTROKE
K=VAL{K$) : IF K=0 OR K>3 THEN 2750
ON K GOTO 2790, 3960, 1330

REM PRINT EXPENSE REPORT

2820
REM COMPUTE HIGHEST, LOWEST, AVERAGE MPG'S
2840

2830

2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040

GOSUB 4760 'READ FILE

FOR X1 = 1 TONL - 1

FOR X2 = X1+1 TO N1
IF MPG(X1) <= MPG(X2) THEN 2910
T = MPG(X1)
MPG(X1)=MPG(X2)
MPG(X2)=T

NEXT X2
NEXT X1

FOR X1 = 1 TO N1
A= A+ MPG(X1)
NEXT X1
AG = A/N1

CLS : PRINT STRING$(55,"-")

PRINT TAB(9) "AUTOMOBILE EXPENSE REPORT - "3

PRINT LEFT$(TIMES,8) : PRINT STRING$(55,"-")

PRINT “For: "; TC$

PRINT

P$="Miles driven to date" : GOSUB 5130 : PRINT P$;CM Program continued

131

3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160

3170

3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690
3700
3710
3720
3730
3740

home applications

P$="Total gallons used" : GOSUB 5130 : PRINT P$; TGU
P$=" Hignest mpg recorded":GOSUB 5130:PRINT P$;MPG(N1)
P$=" Lowest mpg recorded”: GOSUB 5130:PRINT P$;MPG(1)
P$=" Average miles per galion":GOSUB 5130:PRINT P$;AG
P$="No. of times tank filled":GOSUB 5130:PRINT P$;N1
P$="Total fuel expense”:GOSUB 5130:PRINT P$;:

PRINT USING "“$####.#8"; TFC

PRINT@960, "END OF GAS REPORT - STRIKE <P> TO PRINT, “;
PRINT “<N> FOR NEXT REPORT *;

PRINT CHR$(143); : GOSUB 5090

IF K$="n" THEN 3450

IF K$<>"p" THEN 3130

REM LINE-PRINT GAS MILEAGE REPORT

IF PEEK{14312)<127 THEN 3260 "PRINTER READY
PRINTG960, STRING$(63," ");

PRINTG960, "* PRINTER NOT READY! +°;

FOR Z=1 TO 1000 : NEXT : GOTO 3130

CLS : PRINT@474, "<< PRINTING »" ;

LPRINT STRING$(55,"-")

LPRINT TAB(9) "AUTOMOBILE EXPENSE REPORT - ";
LPRINT LEFT$(TIME$,8) : LPRINT STRING$(55,"-")
LPRINT "For: "; TC$

LPRINT CHR$(138)

P$="Miles driven to date" : GOSUB 5130 : LPRINT P$;CM
P$="Total gallons used” : GOSUB 5130 : LPRINT P$; TGU
P$=" Highest mpg recorded”:GOSUB 5130:LPRINT P$;MPG(N1)
P§=" Lowest mpg recorded": GOSUB 5130:LPRINT P$;MPG(1)
P$=" Average miles per gallon":GOSUB 5130:LPRINT P$;AG
P$="No. of times tank filled":GOSUB 5130:LPRINT P$;N1
P$="Total fuel expense”:GOSUB 5130:LPRINT P$;:

LPRINT USING "$####. 44", TFC
LPRINT STRING$(3,138)

REM DISPLAY MAINTENANCE REPORT

CLS

PRINT "Maintenance Report:" : PRINT

PRINT "Maintenance Item" TAB(32) "Date Done" ;
PRINT TAB({49) "Cost"

PRINT STRING$(55,"-")

FOR X = 1 70 N2
PRINT MIS(X) TAB(32) DD$(X) TAB(46);
PRINT USING "$##s.##"; MC(X)
IF X=11 OR X=22 OR X=33 OR X=44 GOSUB 4980
NEXT X

PRINT STRING$(55,"-")

PRINT “Total Maintenance Cost: "
PRINT USING"$####.44"; TMC

PRINT "Maintenance Cost-per-mile:"
PRINT USING "$##.##"; TMC/CM

PRINTBI60, "END OF REPORT - STRIKE <P> TO PRINT, ";
PRINT "<X> TO EXIT ",
PRINT CHR$(143); : GOSUB 5090

IF K$="x" THEN 1330
IF K$<"p" THEN 3630

REM LINE-PRINT MAINTENANCE REPORT
+

IF PEEK(14312)<127 THEN 3760 'PRINTER READY
PRINT@960, STRING$(63," “);
PRINT@S60, "* PRINTER NOT READY! **;

132

home applications

3750 FOR Z=1 TO 1000 : NEXT : GOTO 3630

W
~
[=a3
[=3

3770 CLS : PRINT®474, “<< PRINTING >>" ;

3780 LPRINT "Maintenance Report:" : LPRINT CHR$(138)
3790 LPRINT “Maintenance Item" TAB(32) "Date Done" ;
3800 LPRINT TAB(49) "Cost"

3810 LPRINT STRING$(55,"-")

3820

3830 FOR X = 1 TO N2

3840 LPRINT MIS(X) TAB(32) DD$(X) TAB(46);
3850 LPRINT USING "$###.#4°5 MC(X)

3860 NEXT X

3870

3880 LPRINT STRING$(55,"-")

3890 LPRINT "Total Maintenance Cost: "
3900 LPRINT USING"S$####.#4"; TMC

3910 LPRINT "Maintenance Cost-per-mile:"
3920 LPRINT USING “"$##.##"; TMC/CM

w
w
w
{=3

3940 LPRINT STRING$(5,138)

3950 GOTO 1330 'MENU
3960

3970 ?EM PRINT MPG GRAPH

3990 GOSUB 4760 ‘READ DISK
4000 *

4010 CLS

4020 FOR X = 1 TO N1

4030 IF X = 15 OR X = 30 THEN GOSUB 4980

4050 PRINT STRING$(MPG(X),140) ;
4060 PRINT USING " ##.###4"; MPG(X)

>
o
s
o

Y
o
~
[==]

4080 NEXT X

s
[=1
=
(=]

4100 PRINT@960, "END OF DATA - STRIKE <A> TO SEE AGAIN, "
4110 PRINT “<X> TO EXIT “;

4120 PRINT CHR$(143) ;

4130 GOSUB 5090 'GET KEYSTROKE

-
—t
o
<

4150 IF K$="a" THEN 4010
4160 IF K$<O"x" THEN 4130

4170 GOTO 1330 ‘MAIN MENU
4180

4190 REM START NEW DATA SET

4200 *

4210 CLS : PRINT@192, "NEW DATA SET - INITIALIZATION DATA:"
4220 PRINT

4230 PRINT "Type of car (";CHR$(34);"81 Ford";CHR$(34);")";
4240 INPUT TC$: IF TC$="x" GOTO 1330

4250 INPUT “"Current mileage (NO COMMAS)"; (M
4260 PRINT “Is the "; TC$; " new? (Y or N) "; CHR$(143)
4270 GOSUB 5090

4280 IF K$="y" THEN GOTO 4400

4290 IF K$O"n" THEN GOTO 4270

4300

4310 REM CAR ISN'T NEW. PRINT REMINDER.
4320

4330 PRINT "*** NQTE! *%%

4340 PRINT “Since the "; TC$;" is not new, maintenance cost
4350 PRINT “data will NOT be accurate. This is because

4360 PRINT "maintenance records were not kept up to “;

4370 PRINT “this date."

4380 PRINT

4390

4400 REM VERIFY DATA ENTERED ABOVE

4410

4420 PRINT

4430 PRINT "1S ABOVE DATA CORRECT? (Y/N/A) “; CHR$(143)

4440 GOSUB 5090 'GET KEYSTROKE Program continued

133

4450
4460
4470
4480
4490

home applications

IF K§="y" GOSUB 4510 : GOTO 1330
IF K$="a" GOTO 1330 'abort
[F K$<>"n" GOTO 4440
CLS : PRINT@128, "RE-ENTER THE DATA:"
GOT0 4220

4500 '

4510
4520
4530
4540
4550
4560
4570

4580 ,

4590
4600

REM OPEN & WRITE FILES
PRINT : PRINT "<< SAVING DATA >

OPEN"0",1,F1% 'FUEL DATA FILE
OPEN"0",2,F2% 'MAINT. DATA FILE

PRINT#1, TC$",“LEFT$(TIMES,8)", "CH;TGU;N1;CPM;TFC;
PRINT#2, N2

4610 '

4620
4630
4640
4650
4660
4670
4680
4690
4700
4710

FOR X = 1 T0 N2
PRINT#2, CHR$(34); MIS(X) ;CHR$(34)"," ;
PRINT#2, CHR$(38); DDS(X) ; CHR$(34) ; MC(X);
NEXT X

FOR X = 1 T0 NI
PRINT#L, MPG(X) ;
NEXT X

PRINT#2, MD ; TM

4720 '

4730
4740
4750
4760
4770
4780
4790
4800
4810
4820
4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950
4960
4970
4980
4990
5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110

CLOSE
RETURN

REM OPEN & READ DATA FILES
CLS : PRINT@401, "<< READING DATA FROM DISK »>»"

OPEN"I",1, F1$ 'FUEL DATA FILE
OPEN"I1",2, F2% 'MAINTENANCE DATA FILE

INPUT#1, TC$, D$, CM, TGU, N1, CPM, TFC
INPUT#2, N2

FOR X = 1 TO N2
INPUT#2, MI$(X), DD$(X), MC(X)
NEXT X

FOR X = 1 T0 NI
INPUT#L, MPG(X)
NEXT X

INPUT#Z, MD, TM

CLOSE : RETURN

REM SCREEN-PAUSE SUBROUTINE

PRINTB960, "STRIKE <N> FOR NEXT SCREEN, <X> TO EXIT " ;
PRINT CHR$(143) ;

GOSUB 5090 'GET KEYSTROKE

IF K$="n" THEN CLS : RETURN
IF K$<>"x" THEN 5030
GOTO 1330

REM INKEY$ SUBROUTINE
K$=INKEY$: IF K$="" THEN 5110 ELSE RETURN

5120 '

5130
5140

REM SUBROUTINE TO CALCULATE NO. OF DOTS TO PRINT

134

home applications

5150 X=47-LEN(P$)
5160 P$=P§+STRINGS(X,".")
5170 RETURN

I

135

- HOME APPLICATIONS

Celestial Software

by Michael J. Mangieri

ne of the more perplexing problems in observing a celestial object is

knowing where to look for it. Simple things, like the height and direc-
tion of the object, can be difficult to determine. Most of the good astronomy
magazines and books on the market today do a fairly good job of listing
celestial positions for the most common objects, and sometimes even have
diagrams showing positions of the planets in altitude and azimuth. The
diagrams, however, are usually for planets near the horizon at sunset or
dawn and are almost always just for 40 degrees north latitude.

Armed with some good star atlases, astronomy texts, and the Celestial
Software program, I can easily locate any object no matter where I may be
or at what time of day I look.

The program runs on a 16K Level II TRS-80 and was designed to operate
with an Okidata Microline-80 printer. The program:
® Converts celestial coordinates, right ascension, and declination (RA and
DEC), to horizon coordinates, altitude, and azimuth (ALT and AZ), and
vice versa.

@® Works for any location in the world.

® Accurately computes the positions of any object for any date within the
period from January 1, 1900 to January 1, 2100 to within 1/2 degree.

@ Is menu driven.

® Produces plots and printed data.

Using the Program

Answer the memory size question with 32600. This leaves sufficient room
for the assembly routine that generates the plots to the printer and for a
keyboard debounce routine. I usually use KBEEPFIX by Dennis Kitsz and
Block Cursor by Ron Balewski so the value of 32600 is appropriate.

After you load the program and type RUN, the title appears, followed by
a brief pause while some data statements are collected and sorted. The pro-
gram then asks for longitude (west), latitude, and a time zone correction.

Enter your longitude in degrees, minutes, and seconds, separated by
periods, and with leading zeros included. Next, enter your latitude, using a
plus sign for north and a minus sign for south. Finally, enter a time zone cor-
rection, which is a number used to convert local time into Universal time,
which is used throughout the program. You can compute the value by

136

home applications

dividing your longitude by 15 and using only the integer portion of the
result. For example, if your longitude is 77 degrees west, your time zone cor-
rection is 5 (77/15 = 5.1333). If you wish to enter time quantities in daylight
saving time, subtract 1 from the time correction before entering the value. If
you wish to use Universal time, enter 0.

After this, the program displays a set of instructions which give the format
you must use to enter data into the program. Note that there are two ways to
enter dates, and that time values are entered using a military clock format
(00:00:00 to 24:00:00).

Press ENTER to see the menu. There are 12 options available in Celestial
Software— 10 for calculations of positions and two for plots and displays of
the results. To select an option, press the up or down arrow to point to the
option you want and then press S to select that option.

The 10 basic options are divided into two groups. Group 1, options 1
through 5, allows you to convert celestial coordinates to earth coordinates.
Group 2, options 6 through 10, does the reverse.

Either HOLD, VARY, or a dotted line appears under each heading. The
dotted line indicates the parameter being solved for. VARY indicates the
parameter that changes with each entry. HOLD indicates the item that re-
mains constant for all calculations.

After you select an option, the program displays that option at the top of
the screen and asks for any constant data. Following this, the main display
appears, and the program prompts you for the varying quantities. As you
enter each item, the program displays the value inside the boxed area on the
display that corresponds to the category of the entered item. When you have
entered all required data for the first entry, the program computes the posi-
tion values and displays them, then asks for the next entry. You can have up
to 25 entries for each selection. To exit an option, type X.

If you make an illegal entry, such as a number not in the proper format for
input, the program asks for the number again. If you wish to repeat a value
from the previous entry, press ENTER without a number.

When you type X, the program returns you to the menu. You can then
select a plot of the results, a display of results, or a new option. If you select a
new option, all data for the previous option is lost.

Option 11 is the plot option. The program asks if you wish the resulting
plot to be sent to a printer. Answer Y if you have a printer capable of print-
ing TRS-80 graphics characters.

The next prompt is a choice between an auto plot and a manual plot. The
auto plot selection allows the program logic to select the end points for each
axis. The manual selection allows you to select your own ranges for altitude
and azimuth. Valid ranges are:

Altitude +90 to —90 degrees
Azimuth +0 to 360 degrees

137

home applications

It is possible to enter a larger value for the starting point of the azimuth
axis than for the ending point. This lets you shift the plot left or right so that
points near due north appear contiguous. After the plot is completed, press
any key to return to the menu.

AL$ String representation of altitude in degrees
AL() Numeric value of altitude in radians

AZ$ String representation of azimuth

AZ() Numeric value of azimuth in radians

D1% String value of all entered data

DE$ String representation of declination in degrees
DE() Numeric value of declination in radians
DM() Day of the month

DR Radians per degree

DY() Day of the year

ER Error flag

HA Hour angle

1 Index to all data tables
K Constant used in calculation of sidereal time
LA Latitude in radians

LAS String representation of latitude
LO Longitude in radians

LO$ String representation of longitude
MO() Month

RA() Right ascension

RA$ String representation of right ascension
RD P1/2

ST() Sidereal time (hours)

TI$ Title for printer

TI() Time in hours

T1$ Time (string representation)
YR() Year

D Zenith distance

Table 1. Program variables

Option 12 provides a detailed report of any or all of the values calculated
in the previous option. After you select option 12, the program asks you for a
destination for the results. There are three possible choices—screen only,
printer only, or both. This section of the program uses INKEY$ for entered
data, so a set of instructions appears to tell you how to select data. If you
select option 2 or 3, both of which activate the printer, you can have a title
printed as well as the data. A title of about 15 to 25 characters centers neatly
on the page.

The program traps most illegal entries. If, however, you make a mistake
and have to press BREAK or reset the system, GOTO 240 should get you
back to the menu portion of the program without a loss of data.

138

Table 1 lists the variables used by the program. Table 2 lists the major
subroutines. Each option calls various subroutines to calculate data and
display results. This makes the program easy to debug. Figure 1shows an ex-
ample of an auto plot followed by an option 12 request. Figure 2 is a sample
of the same data with a manual plot selection of 0 to 90 degrees altitude and

home applications

0 to 360 degrees azimuth,

540

2340
2380
2440
2460
2480
2510
2520
2530
2620
2720
2810
2880

3050
3110
3200
3660
4130
4250,4260
4270
4280

Enters data and time

Converts RA$ to RA()

Converts DE$ to DE()

Formats RA$ and DE$ for display

Displays altitude and azimuth (AL,AZ)

Displays right ascension and declination (RA,DEC)
Displays date

Displays time

Formats the screen for all displays

Calculates altitude and azimuth (AL,AZ)
Calculates right ascension and declination
Calculates local sidereal time

Accepts string representation of date and breaks it
down into YR(), MO(), and DY()

Converts string representation of time into TI()
Converts hours into hours, minutes, and seconds
SIN -1 and COS~! calculation

Plots axis

Instructions display

Clear bottom of screen

Displays line for option heading

Printer routine—accepts title and prints site location
(longitude and latitude). Also sets printer size.

Table 2. Subroutines

139

home applications

25.6
23.6
21.6

19. 6
17. 6 @
15.6

13.7 =
11.7 =
8.7

oMU MOC-~=-~rp

7.7

AZ DEG 2@4 209 214 219 223 228 23T 2IB 24z 247 252

ot VENUS 3@ MIN AFTER SUNSET #stodobeh
FOR THE LOCATION GIVEN BY THE FOLLOWING CODRDINATES @

LONGITUDE = @77.00. 20
LLATITUDE = +39.00.00
SELECTION # 1

DATE ~=~ 9/ 1@ / 19881
TiME -~ 18:52: €0

RA ~———- 13:37:48

DEL —~—~ ~1@:3B:42

ALT - 1@. 7315 DEG
AZ] == 246,714 DEG
SELECTION # =2

DATE ——-— 9/ 30 / 1981
TIME ~—- 18:22: 00

RA ~m——w— 15:07:12

DEC ~-em -19:19: 48

ALT -~ 11.4787 DEG
AZL ———~ 233, 203 DEG

SELECTION # 3

DATE --—- 18 /7 1@ / 1981
TIME ~--— 18:02: 60

RA —memome 15:53: 56

DEG ———-— ~22:39:56

ALT ———— 12, 8043 DEG
RZ] ———— 226.174 DEG

SELECTION # 4

DATE -—- 10 /7 31 /7 1981
TIME —-— 17:36:3

RA —m=—-— 17:34:00

DEC —~—- ~26:135: 36

ALT —=—— 15. 0342 DEG
AZ] e 213. 417 DEG

DATE ~-- @ / 1981

SELECTION # S
11 /7 1
TIME -~ 17:22:60

140

home applications

RA ermm 18:20:30
DEC ——— ~26:49: 48
ALT —mm 17.0928 DEG
AZI = 211,067 DEG

SELECTION 4 &

DATE ~-— 11 /7 3@ 7/ 1981
TIME ——— 17:13:00
RA ~—— 19:42:30
DEC ——wm —24324:24
ALT —emeem 20. 3856 DEG
AZI = 209. 348 DEG
Figure 1
A 25.0
L 22,5
T 20.0 -
I
T 17.5 "
u i5.0 -
D 12.5 -
E L
10.@
D 7.8
E 5.0
G
2.5

. m
AZ DEG 4] 36 72 108 t44 1B8@ 21E 252

Figure 2

141

home applications

Program Listing. Celestial Software

10 REM ** CELESTIAL SOFTWARE I VER 2.2 (05/29/81) #%#*

20 CLS:PRINT@402, "CELESTIAL SOFTWARE 1I*;:PRINT@520, "CELESTIAL-TO-HOR
1ZON COORDINATE CONVERSION®;:FORZ=1T01000:NEXT:CLEARIZS

30 DIM D9(12),AL(24),AZ(24),RA(24),DE(24),T1(24),5T(24),YR(24),0M(24),
MO(24),0¥(24)

40 MI$="#p#. 4" M25="#44" :P1=3.14159:RD=1.57079:DR=. 017453 : A#=23925.835
9375:B#=8640184.542:C#=.0929

50 ONERRORGOTO4360

60 DD$="JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC”

70 FORZ=1TO12:READDI(Z) :NEXT

80 FORZ=32604T032634:READX :POKEZ, X : NEXT:POKE16526,92: POKE16527, 127

90 CLS:PRINT®S5, "PROGRAM INITIALIZATION"

100 GOSUB4270

110 PRINT: INPUT"LONGITUDE (DDD.MM.SS)";L0%

120 IF LEN{L0$)<9 THEN 110

130 A$=LEFT$(L0%,3):A= VAL(A$) B$ MID$(L0$,5,2):B=VAL(B$)

140 C$=RIGHT$(L0S,2):C=VAL(C

150 LO=(A+B/60+C/3600)%DR

160 PRINT: INPUT"LATITUDE (+/-DD.MM.SS)";LA$

170 IF LEN(LA$)<9 THEN 160

180 A$=LEFT$(LA$,3):A= VAL(A$) B$=MID$ (LAS,5,2):B=VAL(BS$)

190 C$=RIGHT$(LA$,2):C=VAL(C$

200 (=B/60+C/3600: IF A<O THEN LA=A-C ELSE LA=A+C

210 LA=LA*DR

220 PRINT: INPUT*ENTER TIME ZONE CORRECTION «-- ";TZ

230 GOSUB 4130

240 CLS

250 PRINTTAB(7)"OPTION"TAB(19)"RA/DEC"TAB(31)"ALT/AZ TAB(43) "DATE"TAB(
55)"TIME": PRINT

260 PRINTTAB(10)"1"TAB(19)"VARY"TAB(31)"---~"TAB(43)"HOLD"TAB(55) "HOLD
270 PRINTTAB(10)"2"TAB(19) "VARY"TAB(31)"---~"TAB(43)"VARY"TAB(55) "VARY
280 PRINTTAB{10)"3"TAB(19)"HOLD"TAB(31)"----"TAB(43)"VARY"TAB(55)"HOLD
290 PRINTTAB{10)"4"TAB(19)"HOLD"TAB(31)" ----"TAB(43)"HOLD"TAB(55) "VARY
300 PRINTTAB{10)"5"TAB(19)"HOLD"TAB(31)" -~~~ "TAB(43)"VARY"TAB(55)"VARY
310 PRINTTAB(10)"6"TAB(19)"~---"TAB(31) "VARY"TAB(43)"HOLD"TAB(55)"HOLD
320 PRINTTAB(10)"7"TAB(19)"----"TAB(31)"VARY"TAB(43)"VARY"TAB(55) "VARY
330 PRINTTAB(10)"8"TAB(19)"----"TAB(31) "HOLD"TAB(43)"VARY"TAB(55) "HOLD
340 PRINTTAB(10)"9"TAB(19)" -~~~ "TAB(31)"HOLD"TAB(43) "HOLD"TAB(55) "VARY
350 PRINTTAB(9)"10"TAB(19)"~--~"TAB(31)"HOLD"TAB(43)"VARY"TAB(55) "VARY
360 PRINTTAB(Q)“1l"TAB(lg)"***********‘k PLOT dhhhkhkk ki
370 PRINTTAB(9)"12"TAB(19)"*¥*awkuwasnx DISPLAY *wkwkawrakat
380 PRINT:PRINTTAB(09)"KEY: [=up "CHR$(92)" = DOWN

S = SELECT";
390 A$=Il ___>|I:C$=l' "

400 PRINT@A9+128,A%;

410 B$=INKEY$:IF B$="[" THEN 450

420 IF PEEK(14400)=16 THEN 480

430 IF B$="S" THEN 510

440 GOTO 410

450 PRINT@A9+128,C$;:A9=A9-64:1F A9<D THEN A9=0

460 PRINT@A9+128,A%;: IF PEEK(14400)=8 THEN FORZ=1T050:NEXT:GOT0450

470 GOTO 410

480 PRINTOA9+128,C$; :A9=A9+64:1F A9>704 THEN A9=704

490 PRINT@A9+128,A%;:IF PEEK(14400)=16 THEN FORZ=1T050:NEXT:GOTO 480

500 GOTO 410

510 ON(A9/64+1)G0T0 520,750,950,1150,1340,1510,1660,1840,2010,2180,323
0,3730

142

520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

home applications

CLS:1=0:PRINTTAB(25)"OPTION 1"

GOSUB4270:GOSUB540: GOTO590

PRINT:INPUT"DATE (MON DY YEAR OR MM.DD.YY)";D1$
GOSUB2880:IF ER=1 THEN 540

PRINT:INPUT"TIME (HH.MM.SS IN 24 HR. FORMAT)";T1$
GOSUB 3050: IF ER=2 THEN 560

RETURN

CLS:PRINTCHR$ (23): GOSUB2530 :G0SUB2810: GOSUB2510:GOSUB2520
PRINT@840, "RA("I+1") = ";:INPUTRA$

IF RA$="X"THEN240

IF LEN(RA$)=8THEN640

GOSUB 4250:GOTO 600

GOSUB 2340:1F ER=3 THEN 630

PRINT@392,RA$;

PRINT@902, "DEC{"1+1") = “;: INPUTDE$

IF LEN(DE$)=9 THEN 690

GOSUB 4260: GOTO 660

GOSUB 2380:1F ER=4 THEN 680

PRINT@422,DE$;

GOSUB 4250:GOSUB 4260

S;(I)=ST(O):TI(I)=TI(0):MO(I)=MO(0):DM(I)=DM(0):YR(I)=YR(0):GOSUB
620

GOSUB 2460

[=1+1:GOTC 600
CLS:I=0:PRINTTAB(25)"0PTION 2"
GOSUB4270

PRINT:PRINTTAB(10)"RA/DEC, DATE, AND TIME VARYING QUANTITIES!

FOR Z=0 TO 1000: NEXT:CLS
PRINTCHR$ (23):GOSUB 2530
PRINT@840, "DATE (*I+1") = *;:INPUTDL$
IF D1$="X" THEN 240
GOSUB 2880:IF ER=1 THEN GOSUB4250:G0TOB00
GOSUB 2510:PRINT@04, "TIME (“I+1") = ";:INPUTT1$
GOSUB 3050:1F ER=2 THEN GOSUBA4260:G0T0830
GOSUB 2520:GOSUB 2810:GOSUB 4250:GOSUB 4260
PRINT@B40, "RA ("1+1") = ";:INPUTRA$
IF LEN(RA$)<>8 THENGOSUB4250:GOT0860
GOSUB 2340:IF ER=3 THENGOSUB4250:G0T0860
PRINT@392,RA$;
PRINT@902,"DEC (“I+1") = “;:INPUTDE$
IF LEN(DE$)<>9THENGOSUB4260: GOTO900
GOSUB 2380:1F ER=4 THENGOSUB4260:GOTO900
PRINT@422,DE$;
GOSUB 4250:G0SUB 4260:G0SUB 2620:GOSUB 2460: I=1+1:60T0800
CLS:1=0:PRINTTAB{25)"OPTION 3"
GOSUB4270
PRINTTAB(15)"RA (HH.MM.SS) = ";:INPUT RA$
IF LEN(RA$)<>8 THEN 970
GOSUB 2340:1F ER=3 THEN 970
PRINTTAB{15)"DEC { +/- DD.MM.SS) = “;:INPUT DE$
IF LEN(DE$)<>9 THEN 1000
GOSUB 2380:1F ER=4 THEN 1000

PRINT:PRINTTAB(15)"TIME (HH.MM.SS 24HR FORMAT) = ";:INPUT T1$

GOSUB 3050:1F ER=2 THEN 1030

CLS:PRINTCHRS$ (23):GOSUB 2530
PRINTE102,B1$": “A1$":"C1$;
PRINT@392,RA$; :PRINTG422,DES;

PRINT@840, "DATE ("I+1") = " :INPUT D1%

IF D1$="X" THEN 240

GOSUB 2880:1F ER=1 THEN 1140
TI{1)=TI(0):RA{I}=RA(0}:DE(I}=DE(0)

GOSUB 2510:GOSUB 2810

GOSUB 2620:GOSUB 2460: [=1+1

GOSUB 4250:G0T01080
CLS:1=0:PRINTTAB(25)"OPTION 4"

GOSUB4270

PRINTTAB(15)"RA (HH.MM.SS) = “;:INPUT RA$
IF LEN(RA$)<>8 THEN 1170

GOSUB 2340:1F ER=3 THEN 1170
PRINTTAB(15)"DEC (+/-DD.MM.SS) = ", :INPUT DE$

Program continued

143

1210
1220
1230

1240
1250
1260
1270
1280
1290
1300

1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870

home applications

IF LEN(DE$)<>9 THEN 1200

GOSUB 2380: IF ER=4 THEN 1200

PgINT:PRINTTAB(S)"DATE (MMM DD YYYY OR MM.DD.YY) = “;:INPUT D
1

GOSUB 2880:1F ER=1 THEN 1230

CLS:PRINTCHR$(23):GOSUB 2530
GOSUB2510: PRINTE392, RAS ; : PRINT@422,DES ;

PRINT@84O0, "TIME ("I+1") = ";:INPUT T1$

IF T1$="X" THEN 240

GOSUB3050: IF ER=2 THEN 1330
RA(%);RA(O):DE(I)=DE(0):MO(I)=M0(O):DM(I)=DM(O):YR(I)=YR(O):DY(I)
=DY(0

GOSUB 2520:G0SUB2810
GOSUB2620:G0SUB2460: [=1+1

GOSUB 4250:60T01270
CLS:1=0:PRINTTAB(25)"OPTION 5"

GOSUBAZTO

PRINT:PRINTTAB(15)"RA (HH.MM.SS) = ";:INPUTRA$
IF LEN(RA$)<>8 THEN 1360

GOSUB2340: IF ER=3 THEN 1360

PRINTTAB(15)"DEC (+/-DD.MM.SS) = ";:INPUTDE$
IF LEN(DE$)<>9 THEN 1390

GOSUB2380: IF ER=2 THEN 1390
CLS:PRINTCHR$ (23) : GOSUB2530: GOSUB2480
PRINT@840, "DATE ("I+1") = "“;:INPUTD1$

IF DL$="X" THEN 240

GOSUB2880: IF ER=1 THENGOSUBA4250:G0T01430
GOSUB2510:PRINTRI04, "TIME ("I+1") = ";:INPUTTL$
GOSUB3050: IF ER=2 THENGOSUB4260:GOTO1460
RA{1)=RA{0):DE(I)=DE(0)

GOSUB2520 : GOSUB2810: GOSUB4250:GOSUBA260
GOSUB2620: GOSUB2460: I=1+1:G0T01430
CLS:1=0:PRINTTAB(25)"OPTION 6"

GOSUB4270

GOSUB540
CLS:PRINTCHR$(23):GOSUB2530: GOSUB2810
GOSUB2510:GOSUB2520

PRINT@840, "ALT ("I+1") = ";:INPUT AL$

IF AL$="X" THEN 240
AL{1)=VAL(AL$)*DR
PRINT@708,AL(1)/DR;
PRINT@904, "AZI ("I+1")
AZ(1)=VAL(AZ$)*DR
PRINT@738,AZ{1)/DR;
GOSUBA4250: GOSUBA260: ST(1}=ST(0): TI{1)=TI(0):MO(1)=MO{0):DM(1)=DM(
0):YR(1)=YR(0):GOSUB2720

GOSUB2440: GOSUB2480

1=1+1:G0T01560

CLS:1=0:PRINTTAB(25)"0PTION 7*

GOSUB4270

PRINT:PRINTTAB(10)"ALT/AZI, DATE, AND TIME VARYING QUANTITIES"
FORZ=0TO1000:NEXT:CLS

PRINTCHRS (23): GOSUBZ530

PRINT@840, "DATE (*I+1") = “;:INPUTD1$

IFD1$="X"THEN240

GOSUB2880: IFER=1THENGOSUB4250:G0T01710
GOSUB2510:PRINT@904, "TIME ("I+1") = “;:INPUTT1$

GOSUB3050 : IFER=2THENGOSUB4260:GOT01740

GOSUB2520: GOSUB2810:60SUB4250:GOSUBA260

PRINT@840, "ALT ("I+1") = “;:INPUTAL$

AL(1)=VAL{AL$)*DR

PRINT@708,AL(1)/DR;

PRINT@904, "AZI ("1+1") = “;:INPUTAZ$

AZ({1)=VAL{AZ$)*DR

PRINT@738,AZ({1)/DR;

GOSUBA250: GOSUBA260:GOSUB2720: GOSUB2440: GOSUB2480: 1=1+1 :60T01710
CLS:I=0:PRINTTAB(25)"OPTION 8"

GOSUBA4270

PRINTTAB(15)"ALT (DEGREES) = ";:INPUTAL$

AL(1)=VAL(AL$)*DR

", INPUT AZ$

144

home applications

1880 PRINTTAB(15)"AZI (DEGREES) = ";:INPUTAZS

1890 AZ(1)=VAL(AZ$)*DR

1900 PRINT:PRINTTAB(15)“TIME { HH.MM.SS 24HR FORMAT) = “;:INPUT T1$
1910 GOSUB 3050:1F ER=2 THEN 1900

1920 CLS:PRINTCHR$ (23):GOSUB 2530

1930 PRINT@102,B1$": “A1$":"C1$; :PRINT@708,AL(1)/OR; :PRINT@738,AZ(1) /DR

1940 PRINT@840, "DATE (“I+1") = “;:INPUT D1$
1950 IF D1$="X" THEN 240

1960 GOSUB 2880:IF ER=1 THEN 2000

1970 TI(1)=TI1(0):AZ(I)=AZ(0):AL(I)=AL(C)

1980 GOSUB 2510:GOSUB 2810

1990 GOSUB2720:GOSUB2440:GOSUB 2480:1=1+1

2000 GOSUB 4250:G0T01940

2010 CLS:1=0:PRINTTAB{25)"OPTION 9"

2020 GOSUB4270

2030 PRINTTAB(15)"ALT (DEGREES) = ";:INPUT AL$
2040 AL(I)=VAL(AL$)*DR

2050 PRINTTAB(15)"AZI (DEGREES) = ";:INPUT AZ§
2060 AZ(1)=VAL{AZ$)*DR

2070 PRINT:PRINTTAB{5)"DATE (MMM DD YYYY OR MM.DD.YY) = “;:INPUTDL

$
2080 GOSUB 2880:1F ER=1 THEN 2070
2090 CLS:PRINTCHR$(23):GOSUB 2530
2100 GOSUB 2510:PRINT@708,AL{1)/DR; :PRINT@738,AZ(1)/0R;
2110 PRINT@840, "TIME ("I+1") = ;:INPUT T1$
2120 IF T1$="X" THEN 240
2130 GOSUB 3050:1F ER=2 THEN 2170
2140 AL(z);AL(O):AZ(I)=AZ(O):DY(I)=DY(O):DM(I)=DM(O):YR(I)=YR(O):M0(I)
=MO(0
2150 GOSUB 2520:G0SUB 2810
2160 GOSUB 2720:GOSUB 2440:GOSUB 2480:1=1+1
2170 GOSUB 4250:60T0 2110
2180 CLS:1=0:PRINTTAB(25)"0OPTION 10°
2190 GOSUB4270
2200 PRINTTAB(16)"ALT (DEGREES) = ";:INPUTAL$
2210 AL(1)=VAL(AL$)*DR
2220 PRINTTAB{15)"AZI (DEGREES) = ";:INPUTAZ$
2230 AZ(1)=VAL(AZ$)*DR
2240 CLS:PRINTCHR$ (23):GOSUB2530:GOSUB2460
2250 PRINT@840, "DATE ("I+1") = “;:INPUTD1$
2260 IFDL$="X"THEN240
2270 GOSUB2880: IFER=1THENGOSUB4250:G0T02250
2280 GOSUB2510
2290 PRINT@904, "TIME ("I+1") = “;:INPUTT1$
2300 GOSUB3050: [FER=2THENGOSUBA260:GOT02290
2310 AL{1}=AL{0):AZ(1)=AZ(0)
2320 GOSUB2520:GOSUB4250:GOSUB4260
2330 GOSUB2810:G0SUB2720:GOSUB2440: GOSUB2480: I=1+1:60T02250
2340 A=VAL(LEFT$(RAS,2)):B=VAL{MID$(RA$,4,2)):C=VAL (RIGHT$(RA$,2))
2350 RA(1)=A+B/60+C/3600:ER=0
2360 IF RA(1)<0 OR RA(I)>24 THENER=3
2370 RETURN
2380 S$=LEFT$(DES,1):ER=0
2390 A=VAL(MID$(DES$,2,2)):B=VAL(MID$(DES,5,2)): C=VAL(RIGHT$(DES,2))
2400 D=(A+8/60+C/3600)*DR :DE(1)=D
2410 IF $$="-" THEN DE(I)=-DE(I)
2420 IF DE(I)<-RD OR DE{I)>RD THENER=4
2430 RETURN
2440 A=RA(I):GOSUB3110:RA$=A$
2450 A=DE(1)/DR:GOSUB3110:DE$=A% :RETURN
2460 PRINTE708,STRING$(27," *);
2470 PRINT@708,AL{1)/DR;:PRINT@738,AZ(1)/DR; :RETURN
2480 PRINT@392,STRING$(26," ");
2490 PRINT@392,RA$; :PRINT@422,DES;
2500 PRINT@708, STRING$(28," ");:RETURN

2510 PRINTRES, " "3 :PRINT@70,D1%; :RETURN

2520 PRINT@L00," ", :PRINT@102,B1$":"A1$":"C1$; :RETURN

2530 PRINT@14,"DATE"; :PRINT@42,"TIME", .
2540 PRINT@128,STRING$(32,"-") Program continued

145

home applications

2550 PRINT@270, "RA"; :PRINT@300, "DEC";

2560 PRINT@324,"wvwuvwmeeven "5 :PRINTO354, "wevomcm e "

2570 PRINTE452, " wmwmm e e "5 :PRINT@ABZ, " v w e e "

2580 PRINT@590, "ALT"; :PRINT®620, "AZI";

2590 PRINTG644,"

2600 PRINT@772,"

2610 RETURN

2620 IF RA(1)=24 THEN RA(I)=0

2630 HA={ST(I)-RA(1))*DR*15

2640 ZD=SIN(LA)*SIN(DE(I))+COS(LA)*COS{DE(I))*COS(HA)

2650 A=1:B=1D:GOSUB 3200:2ZD=B:AL(1)=P1/2-ID

2660 A3=TAN(LA)*TAN(AL(1))

2670 A4=SIN(DE(1))/COS(LA)/COS(AL(I))

2680 A5=A4-A3:A=1:B=A5:G0SUB3200

2690 IFHACOTHENAZ(I)=BELSEAZ(1)=2*P1-B

2700 IFHA<-PIORHAYPITHENAZ(1)=2*P1-AZ(1}

2710 RETURN

2720 ZD=P1/2-AL(1)

2730 D=SIN(LA)*COS(ZD)+COS{LA)*SIN{(ZD)*COS(AZ(1))

2740 A=2:B=D:GOSUB 3200:DE{1)=B

2750 83=TAN{LA)*TAN(DE(!})

2760 B4=C0S(ZD)/COS{LA)/COS(DE(1))

2770 85=B4-B3:A=1:B=B5:605UB3200: HA=8

2780 HA=HA/DR/15:1F AZ(1)/DR-180<0 THEN HA=-HA

2790 RA(I1)=ST(I)~HA:IF RA(I1)<0 THEN RA(I1)=24+RA(I)

2795 IFRA(1)>24THENRA(I)=RA(I)-24

2800 RETURN

2810 D#=YR(I)-1900:E#=INT(D#/4)+D#*365-.5:T#=E#/36525.0

2820 SH=AF+BE*TH+CH*TH*TH:SH=S#/86400.0:S#=(S§-INT(S#))*24

2830 IF INT(D#/4)-D#/4=0,S#=S#-.0657098

2840 K=S#:N=DY(I):T=TI(1)+TZ

2850 ST(I)=K+0.0657*N+1.0027*T~(L0O/15/DR)

2860 IF ST(1)>24 THEN ST(I)=ST(1)-24

2870 RETURN

2880 D$=D1§:ER=0

2890 IF VAL(LEFT$(D$ 2))=0 THEN 2940

2900 A$=MID (1)=VAL(A$):A$=MID$(D$,4,2):DM(1)=VAL(A$

2910 A MID%% g g ="{9" § g VAL(A$)(19THEN%920|€:L%EYR (1)= \)AL(A$)
:GOT03000

2920 YR(1)=YR(I-1)

2930 GOTO 3000

2940 A$=MID$(D$,1,3)

2950 FORZ=1TO34STEP3:1FA$=MID$(DD$,Z,3)THEN2970

2960 NEXT:ER=1:RETURN

2970 MO(1)=1/3+2/3

2980 A$=MID$(D$,5,2):DM(I)=VAL(AS)

2990 A$=MID$(D$,8,4):YR(I)=VAL{A$): IFYR(I)=0THENYR(I}=YR(I-1)

3000 A=DI9(MO(1)):A=A+DM(I)

3010 IF MO{1)>2 AND ((YR(I)/4)-FIX(YR(I)/4))=0 THEN A=A+l

3020 DY(I)=A

3030 IF MO(I)<0 OR MO(I)>12 OR YR(I)<1900 THEN ER=1

3040 RETURN

3050 A$=MID§(71$,4,2):A1$=A%

3060 B$=LEFT$(T1$,2):B1§=B$

3070 CH=RIGHT$(T1$,2):C1$=C$:ER=0

3080 TI(I)=VAL(B$)+VAL(A$)/60+VAL(C$)/3600

3090 IF TI{I)<0 OR TI(I)>24 THENER=2

3100 RETURN

3110 IF A>=0 THEN 3130

3120 A=-A:56=1

3130 B=INT(A):C=(A-B)*60:D=INT(C):E=INT((C-D)*60+.5)

3140 AS=RIGHT$(STR$(B),2) :BS=RIGHT$(STR$(D),2):C$=RIGHT$(STR$(E),2)

3150 IFLEFT$(B$,1)=" *,B$="0"+RIGHT$(BS,1)

3160 IFLEFT$(C$,1)=" ",C$="0"+RIGHT$(C$,1)

3170 AS=A$+": "+B§+":"+C$

3180 IF SG=1 THEN A$=“-"+A%

3190 SG=0:RETURN

3200 IF A=1 THEN 3220

3210 B=ATN({3/SQR{-B*B+1)) :RETURN

3220 B=RD-ATN(B/SQR(-B*B+1)):RETURN

146

home applications

3230 CLS:PRINTTAB(22)"OPTION 11 -- PLOT"

3240 GOSUB4270

3250 PRINTTAB(15)"PLOT TO PRINTER (Y/N)";:INPUTQS$
3260 IFQ$="Y"THENPG=1:LPRINTCHRS$(27)CHR$(66):ELSEPG=0
3270 PRINTTAB(15)"AUTO PLOT (Y/N)“;:INPUT Q$

3280 IF Q$<O"N™ THEN 3570

3290 PRINT:PRINT@330, "MIN ALT = “;:INPUT Y1

3300 PRINT@350, "MAX ALT = ";:INPUT Y2
3310 PRINT@458, "MIN AZI = ";:INPUT X1
3320 PRINT@478, "MAX AZI = ";:INPUT X2

3330 IFX2<X1THENX2=X2+360

3340 GOSUB 3660

3350 DY=(Y2-Y1):DX=(X2-X1):D3=DY/10:D4=DX/10

3360 FOR Z=1 TO 10

3370 IF Z=1 THEN PRINT@833,USINGM1$;D3*7+Y1;

3380 IF Z>=2 AND Z<5 THEN PRINT@(833-64*7),USINGM1$;D3*Z+Y1;

3390 IF Z>=5 AND Z<8 THEN PRINT@(769-64*7),USINGM1$;D3*7+Y1;

3400 IF 7>=8 AND Z<11THEN PRINT@(705-64*Z),USINGM1$;D3*Z+Y1;

3410 NEXT

3420 FOR Z=0 TO 10

3430 D8=D4*Z+X1:IF D8KO THEN D8=360-D8

3440 IF D8>360 THEN D8=D8-360

3450 PRINT@(5*Z+967),USINGM2$;D8;

3460 NEXT

3470 FOR Z=0 T0O I-1

3480 X=(100/({X2-X1))*(AZ(Z)/DR)~-(100*X1)/(X2-X1)+16

3490 IFAZ({Z)/DR<X1ANDX2>360THENX=X+36000/(X2-X1)

3500 Y=(-40/{Y2-Y1))*(AL(Z)/DR)+(40*Y1)/(Y2-Y1)+42

3510 X=INT(X+.5):Y=INT(Y+.5)

3520 IF X<16 OR X>116 THEN 3550

3530 IF Y>42 OR Y<2 THEN 3550

3540 SET(X,Y):SET(X+1,Y)

3550 NEXT:IFPG,PRINTUSR(G)

3560 Z$=INKEY$:IF Z$=""THEN 3560 ELSE 240

3570 Z1=0:22=2*P]:723=0:24=P]/4

3580 FOR 7=0 TO I-1

3590 IF AZ{Z)>Z1 THEN Z1=AZ(Z)

3600 IF AZ{Z)<Z2 THEN Z2=AZ(Z)

3610 IF AL(Z)>Z3 THEN Z3=AL(Z)

3620 IF AL(Z)<Z4 THEN Z4=AL(Z)

3630 NEXT

3640 X1=Z2/DR-5:X2=21/DR+5:Y1=Z4/0R-5:Y2=Z3/DR+5

3650 GOTO 3340

3660 CLS:FOR Z=0 TO 42:SET(14,Z):NEXT

3670 FOR Z=0 TO 127:SET(Z,42):NEXT

3680 FORZ=1T011:SET(13,4*Z-2):SET(10%2+6,43):SET(10*2+7,43) :NEXT

3690 Q$="ALTITUDE DEG"

3700 FORZ=1TQ12:PRINT@(64*Z),MID${Q$,Z,1); :NEXT

3710 PRINT®960, "AZ DEG";

3720 RETURN

3730 CLS:Z1$=""

3740 PRINTTAB{15)"SELECT OPTION. . ."

3750 PRINT:PRINTTAB(20)"1. PRINT TO SCREEN"

3760 PRINTTAB(20)"2., PRINT TO LINE PRINTER"

3770 PRINTTAB(20)"3. PRINT TO BOTH"

3780 Q$=INKEY$: IFQ$=""THEN3780

3790 PS=VAL{Q$)

3800 IFPS=1THEN3810ELSEGOSUBA280

3810 PRINT:PRINT“FOR DATA ON EACH ENTRY, ENTER SELECTION NUMBER FOLLOW
ED"

3820 PRINT"BY A '.'; ENTER 'X.' TO END."

3830 PRINT'ENTER '0.' TO PRINT ALL ENTRIES"

3840 Z1$=INKEY$:IFZ1$=""THEN3840

3850 GOTO 4100

3860 IF Z1$="X" THEN 240 ELSE Z=VAL(Z1$)-1

3870 Z1$="":IFZ=-1THENL1=0:12=] -1 :ELSEL1=Z:L2=2

3880 FORZ=L1T0L2

3890 A=TI(Z):GOSUB 3110:AB$=A$

3900 A=RA(Z):GOSUB 3110:AC$=A%

3910 A=DE(Z)/DR:GOSUB 3110:AD$=A% Program continued

147

home applications

3920 CLS:PRINTCHR$(23)

3930
3940
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140
4150

4160

4170
4180

4190
4200
4210
4220

4230
4240
4250
4260
4210
4280
4290
4300
4310
4320

4330
4340

4350
4360
4370

4380

IFPS<>2THENPRINT :PRINT"SELECTION # ";Z+1

TFPS<>1THENLPRINT"SELECTION # “;Z+1

IEPS<>2THENPRINT :PRINT"DATE --- “;MO(Z)"/"DM{Z)"/"YR(Z)
IFPS<>ITHENLPRINT:LPRINT*DATE —-~ “3MO(Z)"/"DM(Z)"/"YR(Z)
[FPS<>2THENPRINT"TIME --- “;ABS$

IFPSCOITHENLPRINT'TIME --- “;AB$

[FPS<>2THENPRINT"RA -~ —-- “,AC$

IFPSCOITHENLPRINT'RA ~---- “.AC$

IFPS<>2THENPRINT"DEC ---- ";AD$

IFPSC>1THENLPRINT'DEC ---- ";AD$

IFPSC>2THENPRINT"ALT -~-- “;AL(Z)/DR;"DEG"
IFPSC<>ITHENLPRINT®ALT ---- ";AL{Z)/DR;"DEG"
IFPSC>2THENPRINT"AZI ---- ";AZ(Z)/DR;"DEG"
IFPSCOITHENLPRINT'AZI ---- "3AZ{Z)/DR;"DEG"
IFPSCOITHENLPRINT" ":LPRINT" *

NEXT

PRINT:PRINT"ENTER NEXT SELECTION # OR X“;

I$=INKEY$: IF Z$="" THEN 4100

IF 2$="." THEN 3860

71$=11$+2$:G0T04100

CLS:PRINTTAB(26) "INSTRUCTIONS"

GOSUB4270

PRINT" THE SYSTEM WILL AUTOMATICALLY PROMPT FOR ALL NECESSARY"

PRINT"ENTRIES REQUIRED FOR THE SELECTED OPTION. ENTRIES MUST BE
N *

PRINT"THE FOLLOWING FORMATS:"

PRINT:PRINT" RA « . . . HH.MM.SS DEC +/-DD.M
M.SS"

PRINT" ALT. . . . DEGREES AZI DEGREES"
PRINT" DATE . . . MMM DD YYYY OR MM.DD. YY"

PRINT" TIME . . . HH.MM.SS IN 24HR CLOCK FORMAT"
PRINT:PRINT" WHEN YOU WISH TO EXIT THE SELECTED OPTION, TYPE
yrw

PRINT:PRINTTAB(21)"PRESS ENTER TO START";

Q$=INKEY$:IF Q$=""THENA240ELSERETURN

PRINT@838,STRING$(48," “};:RETURN

PRINT@902,STRING$(48," ");:RETURN

PRINTSTRINGS (64,"-"):RETURN

INPUT"TITLE FOR PRINTER HEADING? “;TI$:LPRINTCHR$(27)CHR${66)
LPRINTTAB(15)"waxax 0 TI§ 0 dowkkadl

LPRINTSTRING$(2,128)

LPRINT"FOR THE LOCATION GIVEN BY THE FOLLOWING COORDINATES :"
LPRINTSTRING$(1,128) :LPRINT"LONGITUDE = ";LO$:LPRINT"LATITUDE =
";LA$:LPRINTSTRING$(2,128) :RETURN

DATA 0,31,59,90,120,151,181,212,243,273,304,334

DATA 245,197,213,229,33,0,60,22,16,6,64,78,205,141,5,35,16,249,14
,13,205,141,5,21,32,239,225,209,193,241,201
PRINTSTRING$ (64, "~") :RETURN

REM *#** ERROR TRAP ***

IFERR/2+1=9, PRINT@840, "MAX ENTRIES EXCEEDED ";:1=25:GOT04380:ELSE
B=0:RESUMENEXT

FORZ=1T01000:NEXT:G0T0240

148

- HOME APPLICATIONS

Your Personal Expense Account
by D. J. Kelly

For the last 20 years, I have been engaged in two professional activities
that have substantial deductible income tax expenses which must be
sorted out and reported separately. During this time, I have found it impor-
tant to keep track of all expenses without regard to their potential deduc-
tibility. Many times, what I had thought was not deductible at the first of
the year turned out to be a valuable deduction (or would have been had I
kept track of the expenditure). As a result, I developed this expense account
program that is effective and simple to use. This program doesn’t need an ac-
companying textbook and doesn’t produce or need data tapes.

The keystone of any worthwhile expense account program is keeping
receipts for every expenditure (or at least as many as possible). You must also
annotate the receipts as to what was purchased in order to categorize them
properly. If receipts were not given, or were lost, make a handwritten note
of the transaction particulars, such as the date, what was purchased, the
cost, and where it was purchased. For transactions in which receipts are not
normally given, such as the cash purchase of gasoline, no receipt is necessary
to substantiate a tax deduction. The general rule is this: Keep every receipt
(or make one), regardless of its potential tax deductibility!

The Program

The prerequisites for this program are:

@ 16K memory, minimum
® L evel 11 BASIC
® Video display
® Printer (see note at end of text)
As written, the program provides 40 categories numbered 0 to 39. (See Pro-
gram Listing.) You can change this number to suit your needs by changing
line 15 (LET BA =39). The variable BA is used to define the two DIM
statements (lines 20 and 30) as well as the upper limit of the six FOR-NEXT
loops which enable the program to store the values for each category (lines
31, 1010, 2010, 2510, 3040, and 11070). Table 1 shows the categories I use.
The program maintains two registers of expense categories:

Register A Monthly totals. This register returns to zero at

the start of each new month run.
Register B Cumulative totals. This register records the

cumulative amounts for each category as long
as the program is being worked.

149

home applications

Work Away from Home Codes
1 Lodging 2 Utilities
3 Food and meals 5 Telephone—see writing
29 Gas and oil 30 Service and repairs
Writing Codes
5 Telephone (split with professional) 16 Postage
17 Stationery and supplies 18 Equipment
19 Subscriptions, books, publications 20 Fees (agent, etc.)
21 Travel 22 Copies, research, tests
23 Post oftice box rent 39 Special projects
Professional and Work Codes
8 Misc. work search 9 Printed materials
10 Transportation 11 Meals (on the road)
12 Lodging (on the road) 13 Licenses
14 Prof. magazines, books, publications 15 Prof. equipment and supplies
Medical Codes '
24 Hospital 25 Insurance
26 Medicines 27 Doctor calls
28 Misc. medical
Alimony Payment Codes
35 Alimony
Living Expense Codes
6 Clothing 7 Furnishings
31 Car payments Car license, insurance
Mise Codes
34 Entertainment (movies, records, ete.) 37 Depreciable equipment
0 Unaccounted expenses
Table 1. Category assignments
Master Menu

Execution of a program run or completion of most of the subroutines
causes the program to display the master menu (see Table 2). This menu
gives a choice of eight subroutines and an option to end the program. Most of
the subroutines are complete programs and are not dependent on another
subroutine. Thus, they may be initiated at any time and in any sequence. Of
course, logic dictates that you enter some data into the registers before ask-
ing the computer to list the contents, but the Summary to Date and the Year
End Summary will run with all zeros.

150

home applications

SELECT ROUTINE DESIRED

CARRY-OVER INPUTS

NEW MONTH INPUTS
SUMMATION TO DATE

YEAR END SUMMATION

FLAG ACCOUNTS

REGISTER VALUE CORRECTION
NOTES AND INSTRUCTIONS
END PROGRAM

SPECIAL DATA RECAPTURE

Table 2. Master menu

]

[|

W00 -1 UL DD
[}

Carry-over Inputs (routine 1)

Since the program does not use data tapes, I included a way to enter data
from previous program runs. This routine may be run as many times as
necessary to bring register B up to where the previous run stopped. The
routine prints the expense category number on the video display, starting
with zero. Each time you enter a figure, it advances to the next number in
sequence. When the figure for category 39 has been entered, the program
returns to the master menu where you can initiate the routine again to enter
more data,

There is no provision in this routine for a printout. If you type 3 when the
control returns to the master menu, the Summation to Date routine is ac-
tivated, and register B is printed out.

New Month Input (routine 2)

In this routine, each expenditure for the month is entered, and a printed
record is produced. Data is entered in response to instructions printed on the
video display. Paid To and Check Number are shown in one set and Date,
Amount, and Expense Code are shown in the other set. The computer then
adds the given amount to both registers for the category listed. This is
followed by a printout of the complete transaction and assignment of a
transaction number.

One unique feature of this program is the use of a string variable for the
check number. This permits the use of letters to prefix a check number, in
order to indicate different banks, money orders, cashier’s checks, and so on.
Another feature is the provision in lines 2110 through 2360 to assign letter
codes to payees that appear often in your expense accounts. For instance, in
my program, the letter A prints out as American Express.

I built an error correcting routine into the New Month routine. If you hit
the ENTER key and realize you typed the wrong amount or expense code,
just type ERROR and a comma when asked for the next Pay To and Check

151

home applications

Number. (Be sure to type the comma, or you'll get an incomplete response
from the computer.) This entry causes the computer to print out ERROR IN
ITEM X DELETE ENTRY then shift to the register correction routine
where you can subtract the incorrect amount from the A and B registers.
The Register Correction routine then gives you three options to its prompt
OTHER REGISTER CORRECTIONS: Yes, to Return to Master Menu, or
return to current month. You, of course, want Return to Current Month,
where you can enter the correct data.

When all the month’s receipts have been entered, type END. This causes
the computer to print out a list of categories and the amounts for that month
from register A, then return to the master menu. Figure 1 shows a typical
month’s printout. Any number of months can be run in succession. Each
time you activate routine 2, register A returns to zero while register B con-
tinues to accumulate figures. Although this is called the New Month routine,
any period of time may be used (week, month, quarter, etc.) Simply type the
actual period involved when MONTH? appears.

DECEMBER 1981
ITEM DATE AMOUNT CHECK # CODE PAID TO

1 121 81 6.75 34 SEATTLE TIMES

2 12 2 81 3.06 34 WIGWAM

3 122 81 1.36 3 SAFEWAY STORES
4 12 3 81 10.54 R330 34 JOHNSON TV

5 12 4 81 310 R331 1 THE HIGHLANDER APARTMENTS
6 127 81 1843 R332 6 AMERICAN EXPRESS
7 177 81 67.16 R332 10 AMERICAN EXPRESS
8 12 7 81 111.69 R332 12 AMERICAN EXPRESS
9 124 81 6.32 3 SAFEWAY STORES
10 12 10 81 10.54 R333 34 JOHNSON TV

11 12 11 81 20.95 R334 3 SAFEWAY STORES
12 12 11 81 12.86 R335 17 J X GILL

13 12 11 81 15.79 R336 34 WHEREHOUSE

14 12 13 81 157.46 R337 31 GMA.C.

15 12 18 81 38.14 R338 3 SAFEWAY STORES
16 12 18 81 68.98 R339 2 PUGET POWER

17 12 23 81 20 R340 35 V.M.K.

18 12 25 81 32.28 R341 3 SAFEWAY STORES
19 12 26 81 10.54 34 JOHNSON TV

20 12 26 81 22.28 R342 5 BELL TELEPHONE
21 12 26 81 2.34 30 ERNST

22 12 31 81 84.26 R343 34 MAGNOLIA HI FI

23 12 31 81 310 R34 1 THE HIGHLANDER APARTMENTS
24 12 16 81 257 35 V.M.K.

25 1 23 81 257 35 V.MK.

26 1 30 81 257 35 V.MK.

152

home applications

DECEMBER 1981
$0

$ 620

$ 68.98
$ 99.05
$0

$ 22.28
18.43

SCO@\XCDU\AODN)—'O

Pt et it okt ek et ok
O 00 -3 U b O BD —
DO OO OOH OO
o =
® 2 5
o

8

21

MOCO OO TCOOO D

[%;]
N
N
[=>]

1.48

o
3
%%%%%%%%%%%%@%%%%%@%%%%%%%%%%%@ﬁ%@
L
—

OO OO~ = O

Figure 1. Monthly printout

Summation to Date (routine 3)

After running for two or more months, you can access the cumulative
totals to date from register B by running this routine. The computer first asks
you for the period involved, then prints out a list of category numbers with

153

home applications

the amounts for each. Again, when the run is complete, control returns to
the master menu.

Year End Summation (routine 4)

In this routine, the various categories are grouped into larger units and
totaled. You can rearrange this segment of the program to suit your par-
ticular needs based on your category assignments.

Before executing the summary, the program asks for the following:
ENTER ADJUSTED GROSS INCOME FROM FORM 1040 and ENTER
DEPRECIATED VALUE. The adjusted gross income is used in the medical
deduction feature of this routine. If you type in a zero, the program bypasses
that feature; otherwise, the program works over the medical categories and
produces a list of medical figures that can be copied onto your Form 1040.
The program takes into account the one percent and three percent limits and
the halved insurance entry for medical deductions in arriving at the medical
figures it produces.

The depreciated value function is to be used when you have expenses for
deductible equipment that must be handled on a depreciation schedule
rather than as a straight deduction. (For instance, if a professional writer
purchases a typewriter, this is a deductible expense, but the amount must be
deducted a little each year.) The figure to be entered in response to the ques-
tion is that amount to be deducted for the year for all depreciable equip-
ment. You should refer to a good tax guide for instructions on depreciable
deductions. The Year End Summation program then lists each major group,
its categories and totals, and a group total. Figure 2 gives a typical Year
End Summation. Upon completion of the printout, control returns to the
master menu.

Flag Accounts (routine 5)

Occasionally, you have expenses that you want to track, but not to the
extent of establishing a separate category. The flag account routine pro-
vides that tracking by giving a printed record of amounts paid out for cer-
tain products, services, etc. The numbers recorded by this routine do not
change either register A or register B. You can use any number of flag ac-
counts, and you can have a different set every time you run the program.

The routine asks for the period of time involved and the number of ac-
counts to be set up in that run. It then requests the following for each ac-
count individually: the account title, the regular account that carried the
expense, and the individual amounts to be entered. Any number of
amounts may be entered for each account. When all the amounts have
been entered, type a 0, and the program prints out the account title, the
regular expense code, and the total for that account. Then the program
moves on to the next flag account. This continues until you have entered

154

home applications

data for all the flag accounts. Control then returns to the master menu.

Register Value Correction (routine 6)

There are two ways to access this routine: from the master menu or from
the New Month routine. The Register Value Correction routine does not
automatically return you to the master menu; you determine whether con-
trol goes to the master menu or back to the New Month routine.

WORK AWAY FROM HOME EXPENSE

LODGING 6421.52
UTILITIES 673.48
FOOD & MEALS 1884.31
TRANSPORTATION 491.4
TOTAL 9470.71
WORK & PROFESSIONAL EXPENSE
WORK SEARCH
MISC EXPENSE 34.8
PRINTED MATERIAL 69.6
TRANSPORTATION 69.6
LODGING 932.05
MEALS 124.96
LICENSES 715.28
PROF. PUBLICATIONS 160.16
PROF EQUIP & SUPPLIES 209.25
TOTAL 3184.06
WRITING EXPENSE
POSTAGE 3.8
STATIONERY 974.72
BOOKS & PUBLICATIONSI196.3
FEES, AGENT ETC 150
TRAVEL 1145.76
COPIES, RESEARCH, TESTS ETC. 74.5
SPECIAL PROJECTS 1100
P.O. BOX RENT 71
TOTAL 3716.08
MEDICAL EXPENSE
DOCTOR CALLS 400
MEDICINE 300
INSURANCE 2400
HOSPITAL COST 2000
MISC MEDICAL 75.9
TOTAL 5175.9

figure continued

155

SCHED A
LINE NO

home applications

AMT
$

1200
300
500.21
0

1200
400
2000
75.9
3675.9
1500.63
2175.27
3375.27

o

ALIMONY 13626
CHARITY 24

DEPRECIABLE EQUIPMENT
SEE ATTACHED DESCRIPTION

DEPRECIATION 280
ENTERTAINMENT 3076.36

OTHER HOUSEHOLD EXPENSE

CLOTHING 314.83
FURNISHINGS 2560
AUTO PAYMENTS 2046.98
AUTO LICENSE & INSUR 609.7
TOTAL 5531.51
UNACCOUNTED EXPENSES 455.66

Figure 2. Year end summation

To use this routine you must select the category to be corrected and enter
the correct amount for both register A and register B. When these steps
have been completed, you are given three courses of action. The computer
asks for OTHER REGISTER CORRECTIONS and gives you three possi-
ble answers: Yes, Return to Master Menu, or Return to Current Month.
You can correct any number of categories with this routine. If there are a
number of categories to be corrected, however, it might be wiser and
easier to end the run and reload register B on a new run by way of the
Carry-over routine.

156

home applications

Notes and Instructions (routine 7)

This routine gives simplified notes and instruction for the program. If
memory is limited, you can omit this section.

End Program (routine 8)

This routine ends the program execution.

Special Data Recapture (routine 9)

In the event the New Month routine is aborted before it is completed (due
to power failure, fatal program error, deliberate shut off, etc.), it is possible
to pick up where you left off by using the Special Data Recapture routine,
eliminating the chore of reentering all the receipts. The first thing to do is to
bring register B back to the point at which you started the aborted month by
means of the Carry-over routine, then use routine 9 to reload registers A and
B to the point at which the month’s run was aborted. This routine is a scaled-
down version of the New Month routine that requires only the amount and
expense code. When the last item has been entered, type a zero, a comma,
and a zero, and the control will move to the data entry of the New Month
Routine and you can continue entering data for the aborted month.

Program Notes and Changes
As presented here, the program uses the following CHR$ codes:

CHR$(31) Double-wide letters

CHR$(30) Return from double-wide letters

CHR$(13) Carriage return.
Since different printers use different codes for double-wide letters, a change
in the program may be necessary to suit your printer. Most printers,
however, will recognize the CHR$(13) code for a carriage return. If a
32-column printer (such as Radio Shack’s Quick Printer 1I) is used, the pro-
gram will have to be modified as shown in Table 3. The Program Listing
gives a complete program list for an 80-column printer.

2070 LPRINT CHR$(15) C$ CHR$(13)"DATE"; TAB(12);“CHECK"; TAB(22);“AMT";
2080 LPRINT TAB(28);“CODE”
2430 LPRINT P;TAB(4);A$ CHR$(13) B$; TAB(12);D$; TAB(19);C; TAB(27);K
2460 LPRINT“s»» ERROR IN LAST ENTRY »=+"
11080 LPRINT N,TAB(4);“$”; TAB(8);A(N); TAB(15);B(N)
IN LINES 4030 THROUGH 4710 CHANGE:
TAB(35) TO TAB(24)
TAB(32) TO TAB(22)
Table 3. Alternate list for 32-column Quick Printer 11

157

home applications

Program Listing. Expense Account

1 REM *xxkdakwxs EXPENSE ACCOUNT PROGRAM *wskkddkkk Encyc{?opaeade'?-

2 REM IN THIS PROGRAM CHR$(13) IS USED AS A CARRIAGE RETURN

3 REM CHR$(31) IS USED TO LPRINT DOUBLE WIDE LETTER
S

4 REM CHR$ (30) RETURNS FROM DOUBLE WIDE LPRINTED LE
TTERS

5 REM VARIABLES USED C GH JK MN PQRST W YZ

6 REM A$ THROUGH G$

7 REM AA THROUGH AH AND BA

8 REM A(n) AND B{n)

10 CLEAR 1000

15 LET BA=39

20 DIM A(BA)

30 DIM B{BA)

31 FOR N=0 T0 BA

32 LET B(N}=0

33 NEXT N

34 REM ABOVE SETS B REGISTER TO ZERO

35 (LS

40 PRINT:PRINT:PRINT

50 PRINT TAB(15);" SELECT ROUTINE DESIRED"

CARRY-OVER INPUTS*

NEW MONTH INPUTS"
SUMMATION TO DATE"

YEAR END SUMMATION"

FLAG ACCOUNTS"

REGISTER VALUE CORRECTION"
NOTES AND INSTRUCTIONS"
END PROGRAM"

SPECIAL DATA RECAPTURE"

51 PRINT TAB(16);"

52 PRINT TAB(16);"

53 PRINT TAB(16);"

54 PRINT TAB(16);"

55 PRINT TAB(16);"

56 PRINT TAB(16);"

57 PRINT TAB{16);"

58 PRINT TAB{16);"

59 PRINT TAB(16);"

100 LET P=0

110 INPUT Z

115 IF Z>9 THEN 40

120 ON Z GOTO 1000,2000,3000,4000,5000,6000,9000,10000,11000

1000 REM ***x* CARRY-OVER INPUT SUB-ROUTINE v+

1010 FOR N=0 TO BA

1020 PRINT N

1030 INPUT Y

1040 LET B(N)=B(N)+Y

1050 NEXT N

1060 CLS

1070 GOTO 40

1080 STOP

2000 REM **%%* NEW MONTH SUB-ROUTINE *#w**

2010 FOR N=0 TO BA

2020 LET A(N)=0

2030 NEXT N

2031 REM **#*xxkxs ABOVE RETURNS REGISTER A TO ZERQ *wswwxsx

2040 CLS

2050 PRINT"MONTH 277"

2060 INPUT C$

2070 LPRINTCHR$(31) € CHR$({30)CHRS(13)"ITEM";TAB(10);"DATE";TAB(19);"
AMOUNT"';

2080 LPRINT TAB(28);"CHECK #";TAB(39);"CODE";TAB(46);"PAID TO"

2090 PRINT'PAID TO, CHECK NUMBER"

W0 U R

nowomowouowononou

2091 PRINT" END = END OF MONTH"
2092 PRINT" ERROR GOES TO REGISTER CORRECTION ROU
TINE"

2100 INPUT A$,D$

2101 REM **** | INES 2110 THROUGH 2360 RESERVED FOR A$ CODES
2110 IF A$="A" THEN A$="AMERICAN EXPRESS"

2120 IF A$="B" THEN A$="BELL TELEPHONE"

2130 IF A$="BK" THEN A$="BAKER TRAILS (0."

2140 IF A$="C" THEN A$="COLUMBIA HOUSE"

2150 IF A$="CH" THEN A$="CACHET HOMES (0."

2160 IF A$="D" THEN A$="DIXIE ELECTRIC POWER CO-OP"

2170 IF A$="G" THEN A$="G.M.A.C."

158

home applications

IF A$="GS" THEN A$="GULF STATES ELECTRIC UTILITIES"
IF A$="H" THEN A$="THE HIGHLANDER APARTMENTS"
If A$="P" THEN A$="PUGET POWER"
IF A$="R" THEN A$="RADIO SHACK"
[F A$="RCA" THEN A$="RCA MUSIC SERVICE"
IF A$="S" THEN A$="SAFEWAY STORES"
IF A$="V" THEN A$="V.M.K."
IF A$="VL" THEN A$="VIDIO LIBRARY"
IF A$="END" THEN 2500
IF A$="ERROR" THEN 2460
LET P=P+1
PRINT"DATE, AMOUNT, EXPENSE CODE"
INPUT B$,C,K
LET A(K)=A(K)+C
LET B(K)=B(K)+C

LPRINT P;TAB(8);B$;TAB(19);C;TAB(30);D$;TAB(39);K;TAB(46);A$

GOTO 2090

STOP

LPRINT"*** ERROR IN ITEM ";P;" DELETE ENTRY **x"
LET P=P-1

GOSUB 6000

GOTO 2090

STOP

LPRINT:LPRINT TAB(5);"TOTALS FOR THE MONTH OF ";C$;CHR$(13)CHR$(1

3);TAB(6);"CATEGORY" , "AMOUNT"
FOR N=0 TO BA
LPRINT:LPRINT TAB(10);N,“$ ";A(N)
NEXT N
CLS
GOTO 40
STOP
REM **%%* SUMMATION TO DATE SUB-ROUTINE *+tx+
PRINT"CUMULATIVE TOTALS THROUGH 277"
INPUT E$
LPRINT"CUMUMATIVE TOTALS THROUGH ";E$
FOR N=0 TO BA
LPRINT N,"$ ";B(N)
NEXT N
CLS
GOTO 40
STOP
REM ***%% YEAR END SUB-ROUTINE **%x
PRINTUENTER ADJUSTED GROSS INCOME FROM FORM 1040"

PRINT"ENTER DEPRECIATED VALUE"
INPUT H
LPRINT
LPRINT"HORK AWAY FROM HOME EXPENSE"
LPRINT
LPRINT" LODGING"TAB(35);8(1)
LPRINT" UTILITIES“TAB(35);B(2)
LPRINT® FOOD & MEALS";TAB(35):B(3)
LPRINT" TRANSPORTATION"TAB{35);8(29)+B(30)
LPRINT
LPRINT"TOTAL"; TAB(32);B(1)+B(2)+B(3)+B(29)+B(30)
LPRINT

LPRINT"HORK & PROFESSIONAL EXPENSE"

LPRINT

LPRINT" WORK SEARCH"

LPRINT" MISC EXPENSE"TAB(35);B(8)
LPRINT" PRINTED MATERIAL™;TAB(35);:B(9)
LPRINT" TRANSPORTATION" ; TAB{35) ;B(10)
LPRINT" LODGING" ; TAB(35);B(12)

LPRINT" MEALS";TAB(35);B(11)

LPRINT" LICENSES®; TAB(35);B(13)

LPRINT" PROF. PUBLICATIONS";TAB(35);B(14)
LPRINT" PROF, EQUIP & SUPPLIES";TAB(35);B(15)
LPRINT

LPRINT TOTAL"; TAB(32);B(8)+B(9)+B(10)+B(11)+B(12)+B(13)+B(14)+B(1

5)

Program continued

159

home applications

4250 LPRINT

4260 LPRINT"WRITING EXPENSE"

4270 LPRINT

4280 LPRINT" POSTAGE";TAB(35);B(16)

4290 LPRINT" STATIONERY";TAB(35);B(17)+B(18)

4300 LPRINT* BOOKS & PUBLICATIONS";TAB(35);8(19)

4310 LPRINT" FEES, AGENT ETC";TAB(35);B(20)

4320 LPRINT® TRAVEL®;TAB(35);B(21)

4330 LPRINT" COPIES, RESEARCH, TESTS ETC.";TAB(35);B(22)

4340 LPRINT* SPECIAL PROJECTS";TAB(35);B(39)

4350 LPRINT" P.0. BOX RENT";TAB{35);B{23)

4360 LPRINT

4370 LPRINT"TOTAL"; TAB(32) ;B(16)+B(17)+B(18)+B(19)+B(20)+8(21)+B(22)+B
(23)+B(39)

4380 LPRINT

4390 LPRINT"MEDICAL EXPENSE"

4400 LPRINT

4410 LPRINT" DOCTOR CALLS";TAB(35);B(27)

4420 LPRINT" MEDICINE";TAB(35);B(26)

4430 LPRINT® INSURANCE";TAB(35);B(25)

4435 LPRINT" HOSPITAL COST";TAB(35);B(24)

4440 LPRINT" MISC MEDICAL";TAB(35):B(28)

4450 LPRINT

4460 [PRINT"TOTAL";TAB(32);B(24)+B(25)+B(26)+B(27)+B(28)

4470 IF W>0 GOSUB 4800

4480 LPRINT

4490 LPRINTALIMONY";TAB(32);8(35)

4500 LPRINT

4510 LPRINT"CHARITY";TAB(32);B(36)

4520 LPRINT

4530 LPRINTDEPRECIABLE EQUIPMENT"

4580 LPRINT® SEE ATTACHED DESCRIPTION"

4570 LPRINT

4580 LPRINT*DEPRECIATION";TAB(32) ;H

4590 LPRINT

4600 LPRINT'ENTERTAINMENT";TAB(32);B(34)

4610 LPRINT

4620 LPRINT"OTHER HOUSEHOLD EXPENSE"

4630 LPRINT

4640 LPRINT* CLOTHING";TAB(35);B(6)

4650 LPRINT* FURNISHINGS";TAB(35);8(7)

4660 LPRINT" AUTO PAYMENTS"TAB{35);B(31)

4670 LPRINT" AUTO LICENCE & INSUR";TAB{35);B(32)

4680 LPRINT

4690 LPRINT"TOTAL";TAB(32);B(6)+B(7)+B(31)+B(32)

4700 LPRINT

4710 LPRINT"UNACCOUNTED EXPENSES";TAB(35);B(0)

4720 LPRINT

4730 CLS

4740 GOTO 40

4750 STOP

4800 REM *****TAX FORM MEDICAL CALCULATIONS *¥#wx

4810 LPRINT

4820 LET AB=B(25)/2

4821 LT AC=B(26)

4822 LT AD=W*.01

4823 LT AE=AC-AD

4824 IF AE=<0 THEN AE=0

4825 LET AF=AE+AB+B(27)+B(24)+B(28)

4826 LET AG=W*.03

4827 LT AH=AF-AG

4828 IF AG=DAF THEN AH=0

4840 LPRINT'SCHED A AMT®

4850 LPRINT"LINE NO $"

4860 LPRINT

4870 LPRINT" 1%;TAB(14);AB

4880 LPRINT" 2";TAB{14);AC

4890 LPRINT" 3";TAB{14);AD

4900 LPRINT® 4";TAB(14);AE

4910 LPRINT® 5";TAB(14);AB

160

home applications

4920 LPRINT" 6a";TAB(14);B(27)

4930 LPRINT" 6b";TABil4§;B 243

4940 LPRINT" 6c"iTAB(14):B(28

4950 LPRINT" 7", TAB(14);AF

4960 LPRINT" 8";TAB(14);AG

4970 LPRINT" 9";TAB(14);AH

4980 LPRINT" 10";TAB(14);AB+AH

4990 RETURN

5000 REM *****F{AG ACCOUNT ROUTINE #¥x++

5050 PRINT"INPUT MONTH OR PERIOD COVERED"

5060 INPUT G§

5070 LP§INT CHR$(13)CHRS (31)"FLAG ACCOUNTS"CHRS (30)CHR$(13)" FOR
IIG

5100 PRINT"HOW MANY FLAG ACCOUNTS??7"

5110 INPUT G

5120 FOR N=1T0G

5130 PRINT'ENTER TITLE OF ACCOUNT ";N;" AND REGULAR EXPENSE CODE"
5140 INPUT F$,H

5150 LET J=0

5160 PRINT"AMOUNTS TO BE INCLUDED IN FLAG ACCOUNT ;N
5170 PRINT“TYPE 0 FOR LAST ENTRY"

5180 INPUT M

5190 IF M=0 THEN 5210

5195 LET J=J+M

5200 GOTO 5180

5210 LPRINT F$

5220 LPRINT“PART OF REGULAR ACCOUNT “;H

5230 LPRINT" § "4

5240 LPRINT

5300 NEXT N

5310 CLS

5320 GOTO 40

5330 STOP

6000 REM *****REGISTER CORRECTION SUB-ROUTINE #*x*#%
6010 PRINT"TYPE IN NUMBER OF CATEGORY TO BE CORRECTED"
6020 INPUT Q

6030 PRINT

6040 PRINT"A", "B"

6050 PRINT

6060 PRINT A{Q),B(Q)

6070 PRINT

6080 PRINT"TYPE IN CORRECT A & B REGISTER VALUES"
6090 INPUT R,S

6100 PRINT

6110 LET A(Q)=R

6120 LET B{Q)=S

6130 PRINT"NEW REGISTER VALUES"

6140 PRINT A(Q),B(Q)

6150 PRINT

6160 PRINT"OTHER REGISTER CORRECTIONS???"
6161 PRINT" 1= YES"

6162 PRINT" 2 = RETURN TO MASTER MENU"
6163 PRINT" 3 = RETURN TO CURRENT MONTH"

6170 INPUT T

6180 ON T GOTO 6000,40,6200

6190 STOP

6200 RETURN

6210 STOP

9000 REM ***** NOTES AND INSTRUCTIONS ***x*

9010 CLS

9040 PRINT"PROGRAM MAINTAINS TWO REGISTERS FOR CATEGORIZING EXPENSES"
9050 PRINT TAB(17);"REGISTER A = MONTHLY TOTALS. RETURNS"

9060 PRINT TAB(30);"TO O WITH EACH NEW MONTH"

9080 PRINT

9090 PRINT TAB(17);"REGISTER B = CUMULATIVE TOTALS, TOTALIZES"
9100 PRINT TAB(30);"ACCTS ENTERED VIA CARRY-OVER"

9110 PRINT TAB(30);"AND MONTHLY ROUTINES"

9130 PRINT
9140 PRINT" REGISTER A PRINTS OUT AT THE END OF EACH MONTHS RUN")
9150 PRINT® THEN RETURNS TO ZERQ" Program continued

161

home applications

9170 PRINT" REGISTER B PRINTS OUT ONLY VIA SUMMATION TO DATE"

9180 PRINT" ROUTINE"

9190 PRINT" TYPE 1 TO CONTINUE OR O TO RETURN TO MENU"

9200 INPUT AA

9210 IF AA=0 THEN 40

9220 CLS

9230 PRINT"CARRY-OVER INPUTS **USE TO INPUT DATA FROM PREVIOUS PERIO
DS*

9240 PRINT TAB(20);"MAY BE REPEATED AS MANY TIMES AS REQUIRED"

9260 PRINT"

9270 PRINT"NEW MONTH INPUTS **USE TO INPUT MONTHLY EXPENSES. THIS"

9280 PRINT TAB(20);"ROUTINE TOTALIZES EXPENSES BY CATEGORY"

9290 PRINT TAB(20);"FOR THE MONTH"

9300 PRINT

9310 PRINT" NOTE: TYPING END WILL END MONTHLY INPUTS"

9320 PRINT TAB(17);"ERROR WILL SHIFT TO REGISTER CORRECTION"

9330 PRINT TAB(17);"ROUTINE (SEE BELOW)"

9340 PRINT

9350 PRINT" TYPE 1 TO CONTINUE OR O TO RETURN TO MENU"

9360 INPUT AA

9370 IF AA=O THEN 40

9380 CLS

9420 PRINT"SUMMATION TO DATE **PROVIDES A PRINTOUT OF REGISTER 8"

9430 PRINT

9440 PRINT"YEAR END SUMMATION **PROVIDES A YEAR END TOTALIZATION BY MA
JOR

9450 PRINT TAB(20);"AREAS WHICH MAY INCLUDE SEVERAL CATEGORIES"

9470 PRINT

9480 PRINT"FLAG ACCOUNTS **PROVIDES A METHOD OF TRACKING"

9490 PRINT TAB(20);"SPECIFIC PORTIONS OF AN EXISTING ACCT."

9500 PRINT TAB(20);"THIS ROUTINE DOES NOT AFFECT REGISTERS"

9510 PRINT TAB(20);"A OR B, BUT DOES PROVIDE A PRINTED"

9520 PRINT TAB(20);"RECORD OF THE EXPENSE INVOLVED"

9530 PRINT

9540 PRINT

9550 PRINT" TYPE 1 TO CONTINUE OR 0 TO RETURN TO MENU"

9560 INPUT AA

9570 IF AA=0 THEN 40

9580 CLS

9610 PRINT"REGISTER VALUE **PROVIDES A MEANS OF CORRECTING VALUES"

9620 PRINT" CORRECTION IN BOTH REGISTERS FOR ANY EXPENSE CATEG
ORY"

9640 PRINT

9650 PRINT TAB(20);"THIS ROUTINE MAY BE ADDRESSED FROM"

9660 PRINT TAB(20);"THE MASTER MENU OR FROM THE MONTHLY"

9670 PRINT TAB(20);"INPUT ROUTINE. FROM THE MONTHLY ROUTINE®
9680 PRINT TAB(20);"TYPE ERROR, IN PLACE OF PAY TO."
9690 PRINT

9700 PRINT TAB(20);"WHEN USING THIS ROUTINE FROM THE MONTHLY"
9710 PRINT TAB(20);"ROUTINE, BE SURE TO TYPE THE PROPER"

9720 PRINT TAB(20);"RETURN TO CODE TO GO BACK TO THE MONTHLY"
9730 PRINT TAB(20);"ROUTINE, OTHERWISE THE MONTH IN PROGRESS"
9740 PRINT TAB(20);"WILL BE ABORTED AND B REGISTER WILL NOT"
9750 PRINT TAB(20);"BE CORRECT"

9760 PRINT" TYPE 1 TO CONTINUE OR O TO RETURN TO MENU"
9770 INPUT AA

9780 IF AA=0 THEN 40

9790 CLS

9800 PRINT"SPECIAL DATA **PROVIDES A MEANS OF RELOADING REGISTER

9810 PRINT " RECAPTURE A IN THE EVENT OF A FATAL PROGRAM ERRO
Rli

9820 PRINT TAB(20);"0OR POWER FAILURE OR OTHER INTERRUPTION®
9830 PRINT TAB(20);"THIS IS A SCALED DOWN VERSION OF THE NEW"
9840 PRINT TAB(20);"MONTH ROUTINE WHERE ONLY THE AMOUNT AND"
9850 PRINT TAB(20);"EXPENSE CODE ARE INPUT. USE CARRY-OVER"
9860 PRINT TAB(20);"FIRST TO BRING REGISTER B UP TO DATE"
9870 PRINT TAB(20);"THEN THIS ROUTINE. THIS ROUTINE WILL"
9880 PRINT TAB(20);"RETURN TO THE DATA INPUT STAGE OF THE"

162

home applications

9890 PRINT TAB(20);"NEW MONTH ROUTINE, THUS IT IS POSSIBLE"
9900 PRINT TAB(20);"TO CARRY ON WITH AN ABORTED MONTH™

9910 PRINT" TYPE 1 TO CONTINUE"

9920 INPUT AA

9930 CLS

9940 GOTO 40

10000 END

11000 REM **+%x SPECIAL RECAPTURE SUB-ROUTINE *+*wx
11010 PRINT"ENTER AMOUNT AND CODE"

11020 INPUT C,K

11025 IF C=0 AND K=0 THEN 11070

11030 LET A(K)=A§K§+C
11040 LET B(K)=B(K)+C
11050 PRINT C,,K

11060 GOT011010

11070 FOR N=0 TO 8A
11080 LPRINT N,"$ ";A(N);"
11090 NEXT N

11100 CLS

11110 GOTO 2040

163

INTERFACE

Model III I/O Port

165

INTERFACE

Model III I/O Port

by Harry Avant

Several months ago, I constructed an interface for a Model I that received
signals from two photographic densitometers and several temperature
indicators. That I/O device was memory mapped starting at 3000 hex. A re-
cent acquisition of a Model 111 required a new I/O interface for a similar ap-
plication. This article describes some of the characteristics of the Model I1I
I/0 bus and the basic interface, but none of the instruments attached to it.

The external bus for the Model 111 is somewhat different than the one used
by a Model I. Table 1 gives a description of the Model III bus. An asterisk in-
dicates that a logic level zero is true.

Radio Shack publishes a very good service manual for the Model III,
TRS-80 Model 111 Service Manual, part number 26-1061/1062/1062. This
publication should be acquired by anyone designing or constructing add-on
devices to the Model I11.

On the Model III, only the lower eight address lines are brought out,
restricting any interface to port-based I/O only. Memory mapped 1/O is not
possible due to the absence of the upper address lines. Not all of the possible
256 1/0 ports are available for your use because the Model 111 requires ports
80H through FFH for internal uses, such as the line printer address and disk
drives. There are still more than 100 port addresses you can use.

The Model III bus is protected by buffers that are enabled in the outgoing
direction by software. Incoming signals on the data bus must have an exter-
nal signal supplied in order to enable the buffers for incoming data.

Figure 1 is a diagram of the bus buffering of a Model IIl. The even
numbered pins are all ground and are located on the component side of the
printed circuit board. The signal ENEXTIO is generated by software at port
128 decimal to enable U101-103. Until activated by a signal from port 128,
the edge card]2 is disconnected. Pin 43 of]2 is another change from the
Model I. This line, EXTIOSEL*, must go low in order to allow incoming
signals on the data lines to pass through Ul01. When using this line, note
that a 150 Ohm resistor is tied between the line and Vce. This requires that
the chip used to drive the line be capable of handling the resultant load. A
very useful control line, IOBUSINT™*, is on pin 39 of J2. This is a Z-80 mode
1 interrupt which, when pulled low by an external device, forces the com-
puter to jump to the service routine whose address is stored at 403EH and
403FH. The Model 111 external bus has a much better layout than that of the

167

interface

Number Function

1 Data line 0

3 Data line 1

5 Data line 2

7 Data line 3

9 Data line 4

11 Data line 5

13 Data line 6

15 Data line 7

17 Address AD

19 Address Al

21 Address A2

23 Address A3

25 Address A4

27 Address A5

29 Address A6

31 Address A7

33 IN* specifying that an input is in progress

35 OUT"* specifying that an output is in progress

37 RESET* system reset

39 TIOBUSINT* notifies the CPU that an interrupt is
requested

41 IOBUSWAIT"* to force wait states from external
devices

43 EXTIOSEL* enables input via bi-directional data
buffer

45 No connection

47 M1I* standard Z-80 signal

49 IORQ* standard Z-80 signal

2-50 All even numbered pins are ground.

Table 1. Description of the Model I1I bus

Model I, with all even numbered pins at ground and data and address lines
in numerical order.

The Intel 8255 programmable interface chip used in this interface has
been described several times in articles relating to its use in the TRS-80
Model I. An extensive discussion of the programming of the 8255 is not in-
cluded here. A brief example of the use of control words in mode 0 is shown
in Figure 2.

A major difference in using the 8255 with the Model II1 is the capability of
incorporating interrupt mode 1 applications. In this mode, the 8255 can
directly cause the TRS-80 to jump to the interrupt routine. Intel publishes
an excellent data sheet for this device, Application Note AP-15, 8255A Pro-
grammable Peripheral Interface Applications, which sells for $1. It

168

interface

+5v

ixs,on
EN 018 EXTERNAL 8US
oo u10l ZTD
o LS245 02 3>
2 o:D
03 {7>
04 220
0s 2% >
os o2 75>
o7 >
AQ AO @
Al L
N %3 ez
A3 23
A4 S
a5 27>
A6 26 75
a7 AE>
EN
IN* WS
QUT * OUT ¥ 35
RESET * 31503357 msZZT:::
M1 *
10RQ *
=N ExTiOSEL*@
HNC .
E

ALL EVEN
ENEXTIO Dc ”';—D 2-50

Figure 1. Model 111 bus buffering

describes several examples of interfacing the 8255, including the use of it
with interrupts.

Figure 3 is a schematic of the basic 24-bit I/O device. A photograph of the
basic interface is shown in Photo 1. Due to a unique physical placement
problem for the interface described (located at the end of a six-foot, fifty-pin
cable) some unusual precautions against noise have been employed. Photos 2
and 3 show ringing at both the leading and trailing edge of a data line at the
end of a six-foot cable. For many applications, this amount of over- and un-
dershoot would be catastrophic. Extending the data and address lines out
over a six-foot cable can produce an extensive amount of radio frequency in-
terference that can raise havoc with nearby television receivers and other
high-frequency detectors.

In this circuit, Vee pins for all of the integrated circuits are not connected
directly to 5 volts, but are routed through 2.7 Ohm, 1/8 Watt resistors. This

169

interface

Al A0 RD* WR* CS* Action

0 0 0 1 0 input port A to data bus.

0 1 o0 1 0 input port B to data bus.

1 0 0 1 0 input port C to data bus.

0 0 1 0 0 output data bus to port A.

0 1 1 0 0 output data bus to port B.

1 0 1 0 0 output data bus to port C.

1 1 1 0 0 output control word to 8255,
X X X X 1 tri-state

X X 1 1 0 tri-state

Example: Control word sent to port 15 (OUT 15, control word)

Control word Port A PortB Port Clow Port C upper

128 ouT OouT ouT ouT
129 OoUT OUT IN our
130 ouT IN ouT ouT
131 ouUT IN IN ouT
136 ouT OouT ouTr IN
137 OouT OuUT IN IN
138 OouUT IN ouT IN
139 OouUT IN IN IN
144 IN ouTr OuT ouT
145 IN OUT IN ouT
146 IN IN ouT ouT
147 IN IN IN ouT
152 IN ouT ouT IN
152 IN OUT IN IN
153 IN OUT IN IN
154 IN IN ouT IN
155 IN IN IN IN

Figure 2. 8255 configuration

provides a fuse for each chip and, combined with the bypass capacitors at
each chip, provides excellent decoupling.

The pull-up resistors used here are 1000 Ohms. Some Model I interfaces
use pull-up resistors of 4700 to 10,000 Ohms. This is far too high a value in
this application and can significantly reduce switching speed. In addition,
pin 2 of U4 has the unused pin pulled up via a 1000 Ohm resistor in series
with a 100 uf capacitor. I highly recommend this technique for pulling up
unused gates on multiple input chips for noise suppression. Little additional
features such as these are well worth the slight additional cost, as they pro-
duce clean switching and prevent burning out an entire board full of chips in
the event of misapplied voltage.

170

TRS-80 MODEL I
BUS AT J2

interface

Do K< l'l

o1 <3}

p2 <3}
03 <7}

3
3(-1|

04 <3}

0s <11}
p6 <3}

o7 <%}

AQ < lT;

a1 <8}
<

ué
8255

o7 <3

36

3

+5v +5V

07|

1]

o7

oo

bT

N{U lb

M
< iz [0

£

°l

v
=3

n

I
o

M
o

Fl

o
»

ES

o

&

pd

o

S

l

T

7486

R SET < 37}
EXTIOSEL < 4‘}

SEL ANY
SEL A 2

us

<2}
GND

SSELC 4

SEL 8

J0BUSINT <3 }

l EXT SYNC
EXT INT

Figure 3. 24-bit 1/0 device

7415145 I»'

40 PORT A

PORT B8

PORT C

171

interface

based decoder for

conventional port

~U4 provide a
ing to the 8255

cuits Ul

addressing and wr

1T

Integrated c

and A3 are

2

A2

ines AQ,Al,

Address 1

it

Photo 1

Photo 2

172

interface

noninverted by Ul and U2, providing for a range of address from 12 to 15.
The 8255 control word register is accessed by setting a bit high on both A0
and Al so that port 15 is the control word address for the I/O chip. Address
12 represents port A, 13 represents port B, and 14 represents port C. When
addressed, a pulse of about 1200 nanoseconds is sent to pin 6 of the 8255.

A T41.S145 chip provides synchronized input signals. I selected this chip
because of the need to drive large loads that are not shown on the basic inter-
face drawing. By setting the switch S-1, you can synchronize input with all
ports or just one. In addition, switch S-2 provides an external sync signal. An
additional line, EXTINT, is brought out to allow for external driving of the
interrupt mode 1 capability.

After the interface has been assembled, you can test it using the simple
BASIC program that follows. Use jumper wires to connect port A to port C,
pin 4 to pin 18, pin 3 to pin 19, and so on.

10 OUT 236,16 : REM enable the I/O bus

20 OUT 15,137 : REM control word to configure the 8255

21 REM : for output port A and B input port C

30 FOR X=1TO 255

40 OUT 12,X : REM send out “X” to port A

50 C=INP(14) : REM read value coming into port C

52 PRINT“OUTPUT TO PORT A="; X

54 PRINT“INPUT FROM PORT C=";C

60 FORT=1TO 10: NEXTT Program continued

Photo 3

173

70 NEXT X
80 OUT 236,0 : REM turn off the /O bus
90 GOTO 10

interface

To test the interrupt mode 1 function, use the following program. Load the
assembly-language code shown in Figure 4 into high memory first. Next,
enter BASIC, reserve memory (65279), enter the BASIC code, and run the
program. During the run, a momentary short from 39 to ground causes the
interrupt function to occur, followed by a return to the BASIC program.
A typical BASIC program to test the interrupt action would be as follows:

100 POKE &H403E,&H00 : REM address of interrupt program
110 POKE &H403F ,&HFF

120 OUT 236,16 : REM enable the external bus

130 OUT 224,8 : REM set bit 3 of port OE.

140 FORR=1TO 10

150 FOR X =33 TO 127

160 PRINT CHR$(X):

170 NEXT X
180 NEXT R
200 END
00240 ORG OFFO00H ; for 48K, decimal 65280
00250 ;save the registers
00260 PUSH AF
00270 PUSH BC
00280 PUSH DE
00290 PUSH HL
00300 PUSH IX
00310 PUSH Iy
00320 ;
00330 CALL 0l1C9H ;Clear the video
00340 LD HL,MSG1
00350 CALL 021BH ;$VDLINE
00360 ;
00370 POP 1Y
00380 POP X
00390 POP HL
00400 POP DE
00410 POP BC
00420 POP AF
00430 ;
00440 EI
00450 ;
00460 RETI
00465 ;
00470 MSG1 DEFM ‘THIS IS A TEST OF IM-1
00480 DEFB (0ODH

174

interface

00490 ;
00500 END OFFOOH

Figure 4. Interrupt routine to be stored in high memory

When these programs are run, you can enable the interrupt at any point
during the execution of the BASIC program. The screen clears, and THIS IS
A TEST OF IM-1 appears for a moment. Then the BASIC program resumes
its execution without losing any characters.

175

TUTORIAL

A Bit of Precision
Computer Number Systems
And Arithmetic Operations—Part II

177

TUTORIAL

A Bit of Precision

by Allan S. Joffe W3KBM

here are many reasons why your computer may not do what you want
it to do. In this article, I will describe some of these problems so you can
examine their causes.

Perhaps the easiest way to begin is to use the SGN function in a program.
Remember that SGN(X) returns ~ 1 for values of X less than 0; it returns 0 if
X =0; it returns +1 if X is greater than 0.

Type in this programming segment for the initial successful demonstra-
tion.

5 CLS
10 FORX = -2to 2STEP .5
20 IF SGN(X) =0 THEN STOP
30 NEXTX
When you run the program, you get a BREAK IN 20 message. To help you
visualize what is going on, add:
15PRINT X;. .. .
This gives you the following series on your video screen:
-2 =15 -1 -5 0
With SGN(X) equal to 0, the program stops.
To guarantee a complete lack of success, change line 10 to read:
10FORX = -2TO 2STEP .1

Before you run the revised program, think a bit about why success might
elude you. If you play computer with pencil and paper, you will perform the
indicated operations and reach 0. It appears that SGN(X) could equal 0,
halting the program. Run the revision, including line 15, and you have suc-
cessfully avoided success. To see why, look at the numbers on your screen. In
the center of the second line of the printout you see this series of numbers.
-.2 -.0999997 3.12924! -07 .1

SGN(X) apparently has failed because, for some reason, the computer has
not generated the zero that SGN(X) was looking for. The reason is that your
computer cannot give you a fine-tuned value for .1. If you try step values of
.25, or .0625, or .03125, then SGN(X) works once more. The logical answer
lies in how your computer internally treats values to the right of the decimal
point. If they are equal to 1/2, 1/4, 1/8, 1/16, and so on, SGN(X) works like a
charm, because this series is the binary reciprocal of the series to the left of

179

tutorial

the decimal point, namely, 2, 4, 8, 16, and so on. Now, let us throw a log or
two into the hopper and get into some similar trouble with logarithms.

The charm of logs is that they can make the handling of large numbers
simple. If you ask the computer to print the log of 2, it gives you an answer of
.693147 which is indeed the log of 2 but which is more precisely the
Naperian log of 2. You probably wanted the log of 2 to the base 10 or what is
called the common log of 2. To get this answer, enter:

PRINT LOG (2)/LOG(10)
This gives you .30103, which is the value you probably wanted and expected
to see.

At this point, it may seem illogical to present a log example for a small
number when I suggested that the charm of logs was their facility with large
numbers. Look at the following program.

5 CLS

10 FOR X =50000 TO 50005

20 PRINT LOG(X)/LOG(10);

30 NEXT X
The problem becomes painfully obvious when you run this program and see
on the screen:

4.69897 4.69898 4.69899 4.699 4.69901 4.69901
Itdoes not make sense to believe that 50004 and 50005 have identical values
for their logs. The answer lies in insufficient precision at this level. I realize
that the temptation is strong to add a line:
7 DEFDBL X

With this approach, however, you get a TM (type mismatch) error message.

The computer syntax evidently does not allow you to set the FOR/NEXT
loop counter value to be a double-precision variable. To get around the
problem, do a bit of logical program restructuring,

5 CLS
7 DEFDBL A
10 FOR X = 50000 TO 50005
20 A =LOGX)/LOG(10)
30 PRINT A:
40 NEXT X
If you run this and examine the last two answers in the printout, you see
that:
Log of 50004 =4.699004650115967
Log of 50005 =4.699013710021973
The double-precision feature allows you to get separation of these two
values—separation that single precision would not allow.

For the values 50000 to 50005, you find that you really do not need to use
more than seven of the digits to the right of the decimal point to implement
an anti-log expression that lets you use the log of X to recover X accurately.

180

tutorial

If you have the log of a number, you can find the number by exponentia-
tion, that is, raising the base 10 of the common log system to a power which
is the logarithm of the number. For example, you have the log of 50004. If
you enter:

PRINT 10t 4.6990046

you would see 5004 on the screen.
Now you will put the computer through the wringer by asking it to work
on a value in the millions.

5 CLS
10 DEFDBL A,B

20 FOR X = 1000000 TO 1000010
30 A =LOG(X)/LOG(10)

40 B=10tA

50 PRINT A,: PRINT FIX(B)

60 NEXT X

This program first takes the log and then takes the anti-log of the values of X.
FIX gets rid of any decimal values since they are totally meaningless. The
anti-logs produced are as follows:

1000000
1000001
1000002
1000003
1000003
1000004
1000005
1000007
1000007
1000008
1000011

From the fact that 17 digits of precision are not enough to provide finite
separation of the values on an anti-log basis, you might jump to the conclu-
sion that the results have questionable value. But, if you consider the relative
error of one or two parts out of 1,000,000, you can appreciate the value of
the double precision that is packed into your computer.

For the sake of relative completeness, try one small change in the pro-
gram. Change the second half of line 50 to read:

PRINT USING“}#####4”:B

The anti-log values are as follows:

1000000
1000002
1000003
1000003
1000005
1000006

181

tutorial

1000008
1000009
1000012
The slight changes noted here are due to the rounding off that is part of the

PRINT USING statement.

182

TUTORIAL

Computer Number Systems
And Arithmetic Operations—Part II

by Gene Kovalcik

he objective of Part II is to acquaint the reader with arithmetic opera-
tions using computer number systems. Most digital computers contain
binary circuitry to perform arithmetic operations. In the TRS-80, the cii-
cuitry provides for addition and subtraction. Multiplication and division are
performed by software routines in ROM. Internal computer operations are
based on the principle of addition using the binary number system. Subtrac-
tion uses the two’s complement method which is, in essence, an addition
procedure. Multiplication uses repetitive addition, and division uses repeti-
tive subtraction with the two’s complement performed first for subtraction.
Computer programmers work with object programs and memory dumps,
or printouts, to locate errors. An object program is a machine-language pro-
gram, generated from a compiler or assembler, that can be executed by the
computer directly. This often requires the performance of simple addition
and subtraction of address values to find the data contents or computer in-
structions in computer memory. These addresses can be in octal or hex-
adecimal numbers, the shortcut notations of binary numbers. Due to the
need for detailed error analysis, it may be necessary to add and subtract
binary numbers.

Addition in General

The steps required to add two numbers are the same in all number
systems. The general steps involved in the addition of numbers for any
number system are shown in Table 1. This procedure is applicable to
understanding addition of binary, octal, and hexadecimal values. All binary
and octal digit symbols are also decimal symbols, so adding them as decimal
digits is easy. Hexadecimal numbers however, which use some symbols quite
different from decimal digits, are more complicated. Before any hex-
adecimal addition, or for that matter doing any arithmetic, you must con-
vert the symbols A through F to their equivalent decimal values of 10
through 15.

Addition always starts with the rightmost column. When this column is
greater than or equal to the value of the base, a “carry” occurs. Whenever a
1 is carried to the next column, the value being carried is equal to the value
of the base. For example, if the sum of the numbers in the rightmost column
is 17, a 1 is placed in the next column (to the left) which carries a value of 10

183

tutorial

(the base). A 1 in the tens (power of 1) column is equal to 10 in the ones
(power of 0) column. After the carry of 1, the remaining digit, in our case 7,
is entered in the first column. Repeat these steps for each column.

Stepl Add the first column (rightmost)

Step 2 If the column total from Step 1 is equal to or greater than the base, subtract the value of
the base from the column total and carry 1 to the next column to the left.

Step 3 If there are additional columns, add the next column and repeat Step 2.

Table 1. Steps in the addition process

Adding Decimal Numbers

Let us add decimal 679 to decimal 964. Step 1 is to add the first column
(rightmost). This addition of 9 to4 gives a total of 13. Since 13 is greater than
the highest single digit (9) in decimal, 1 is carried to the next column.
Because the value of the base is 10, this value 10 is always carried, and a 3 is
placed in the first column (13 - 10). Step 2 is to add the next column (tens
column). Adding the digits 1, 7, and 6 gives a total of 14. Again a 1 is carried
to the third column (hundreds column). Here, 14 minus 10 leaves a value of
4 for the tens column. The last column of 1, 6, and 9 totals 16. Again 16
minus 10 leaves 6 in the hundreds column, and a 1 is carried to the thousands
column. The total number, therefore, is equal to 1,643. The comma for
breaking up groups of three digits for readability is used only in the decimal
system.

Adding Binary Numbers

The same addition steps used in adding decimal numbers can be applied
to binary numbers. Refer to Figure 1 for specific addition and subtraction
rules for binary numbers.

Binary Addition Rules
0+0=0
0+1=1
1+0=1

1 + 1 = 0and carry 1, or it is 10, (two-bit number).
Binary Subtraction Rules

0-0=0
1-0=1
l1-1=1
0 —~ 1 = 1 (with a borrow of 1)

Figure 1. Four basic rules for addition and subtraction of binary numbers

184

tutorial

Let us add binary 110111 and binary 101110. The first step is to add the
ones (power of 0) column of digits 1 and 0. The column total is 1, a single
digit, so no carry occurs. The next step is to add the next column of 1 and 1,
which gives 2. Since a decimal value of 2 cannot be used as a single digit, a
carry occurs. To carry, place a 1 above the column to the left. The carry is 2,
the value of the base. Since a value of 2 out of a column total of 2 is being car-
ried, the remaining column value is 0. The third-column value is decimal 3.
Again, a carry results. Since decimal 3 is greater than or equal to the base,
we carry a 1 to the fourth column, leaving a 1 in the third column. The addi-
tion is the same for each column. The above solution of the binary addition
example with the use of the expanded form for checking the results follows:

110111,
+ 101110,

1100101,

Expanded Form Check
(1x32) + (1x16) + (0x8) + (I1x4) + (1x2) + (Ix1) = 55,
(1x32) + (0x16) + (Ix8) + (Ix4) + (Ix2) + (0x1) = 46,0
1010
(AIx64) + (I1x32) + (0x16) + (Ox8) + (I1x4) + (0x2) + (Ix1) =101,

Adding Octal Numbers

To add the octal numbers 765 and 534, add the first column of 5 and 4,
which totals 9. Since the maximum decimal value for a single digit in octal is
7, acarry must occur. A 1 is carried to the top of the next column, which car-
ries a value equal to the base, 8. Because 8 of the column total of 9 has been
carried, the difference of 1 is recorded below the first column. The second
column of 1, 6, and 3 totals decimal 10. A carry of 1 to the third column car-
ries a value of the base. Because 8 of the 10 in the second column has been
carried, the difference of 2 is recorded below the second column. The last
column of 1, 7, and 5 totals decimal 13. Since decimal 13 is greater than 8 a
carry of 1 occurs, and the decimal 5 (13 minus 8) is recorded in the last col-
umn. The carry of 1 becomes the fourth octal digit. The following illustrates

the completed octal addition problem with the use of the expanded form

check: Octal Addition

7654
+ 534,

15214

Expanded Form Check
(7x64) + (6x8) + (5x1) =501,
(5x64) + (3x8) + (4x1) =348,
849,
(I1x512) + (5x64) + (2x8) + (I1x1) =849,

185

tutorial

Adding Hexadecimal Numbers

This last addition example illustrates adding hexadecimal D86 to hex-
adecimal 6A9. For step 1, add 9 and 6 to obtain a total of decimal 15.
Decimal 15 is represented as the hexadecimal symbol F and is recorded
below the first column. The second column adds 8 and A. Change symbol A
to decimal 10. The column total is equal to 18. Decimal 18 is greater than a
single hexadecimal digit, therefore, a 1 is carried to the third column. This
carries 16 (the base) of the total 18, and the remaining 2 is recorded below
the second column. The third column of 1, 6, and D (decimal 13) equals a
total of 20. Again, the column total exceeds the maximum size of the hex-
adecimal digit F (15), so a carry must occur. The 1 carry has the value of
base 16, so a 4 is recorded for the third column. The last step is to simply
record the 1 from the last carry as the fourth column. The following example
shows the addition process:

Step 1 D86 F is decimal 15, thus no carry is required.
+ 6A9

F

Step2 'D86 In the second column, 8 is added to A (deci-
+ 6A9 mal 10) to yield 18. 18 minus 16 gives 2, with
2F acarry of 1.

1
Step3 'D86,s The third column of 1, D (decimal 13), and 6
+ 6A9,, gives 20, and 20 minus 16 equals 4 with a
142F), carry of 1 to the fourth column.

The solution of the above hexadecimal addition problem with the use of the
expanded form check follows:

Hexadecimal Addition

D86m
6A9;6
142F ¢

Expanded Form Check
(13x256) + (8x16) + (6x1) =3,462,
(6x256) + (10x16) + (9x1) =1,7054
5,167
(1x4096) + (4x256) + (2x16) + (15%x1)=5,167;

If your results are not in agreement, check the hexadecimal addition. It is
quite likely that the first attempts at addition are going to be failures. Com-
mon mistakes are forgetting to change the number symbols A, B, C, D, E,
and F to their proper decimal equivalents, and failure to remember that car-
ries involve the decimal number 16.

186

tutorial

Subtraction in General

The principles of subtraction using decimal numbers can be applied to
subtraction of numbers in any other base. Table 2 shows the two steps for
subtraction which are repeated for each column of the numbers involved.
Step 1, if the subtrahend digit of the column is larger than the minuend
digit, is to borrow from the column on the left. The borrowed digit is always
equal in decimal value to the base used. Thus, in binary subtraction, 2 is
borrowed; in decimal, 10 is borrowed; in octal, 8 is borrowed; in hex-
adecimal, 16 is borrowed. Step 2 is to subtract the lower value from the top
value. In the following paragraphs, the solutions of examples of subtractions
using decimal, binary, octal, and hexadecimal numbers are given.

Subtracting Decimal Numbers

Let us demonstrate the general steps in subtracting decimal 485 from
decimal 846. Step 1 is to determine if borrowing is necessary. Five is less than
6, so no borrowing is required. Taking 5 from 6 leaves 1, which is recorded
in the first column. In the second column, subtracting 8 from 4 requires bor-
rowing. A 1 is borrowed from the column to the left, leaving a value of 7 in
the third column. Since the base is 10, 10 is the actual value being borrowed.
The 4 in the second column is added to the borrowed 10, making 14. Taking
8 from 14 leaves 6. The third operation is to subtract 4 from the remaining 7
in the third column, giving 3. The following example shows the procedure
for decimal subtraction:

Definitions: Subtrahend— number being subtracted

Minuend—number being subtracted from

Examples: In the operation 6 — 3, 3 is the subtrahend and 6 is the minuend.
Step1 If the subtrahend digit of the column is larger than the minuend digit, borrow from the
column to the left. When borrowing, remember to subtract 1 from the column being borrowed
from. The value borrowed is always equal to the value of the base.

Step2 Subtract the lower value from the top digit value. When the hexadecimal digit symbols of
A through F are used, convert them to their equivalent decimal values.
Repeat Steps 1 and 2 for the next column to the left until there are no more columns.

Table 2. Steps for subtraction

Decimal Subtraction
846,, Minuend

- 48510 Subtrahend
361, Difference

The steps of subtraction described above can be applied easily to any

187

tutorial

number system. In the next sections, we will apply the steps to do subtrac-
tions in the binary, octal, and hexadecimal systems.

Subtracting Binary Numbers

The problem is to subtract binary 01110 from binary 10101. Refer to
Figure 1. The first column does not require borrowing, and the 0 is sub-
tracted from the 1. In the second column we subtract 1 from 0, so borrowing
must occur. A 1 is borrowed from the column to the left, leaving a 0 in the
third column. The 1 borrowed from the third column becomes 2 in the sec-
ond column because the base is 2. A 1 in the fours (power of 2) column is
equal to 2 in the twos column. Continue the subtraction by taking 1 from 2
in the second column. In the third column, to subtract 1 from 0, borrowing
is again required. The fourth column contains a 0, therefore nothing is
available to borrow. Because of this, we borrow from the fifth column. This
borrow of 1 from the fifth column changes the 0 in the fourth column to a 2.
Recall that a 1 in the fifth (sixteens) column equals decimal value 2 in the
fourth (eights) column. Now the fourth column has something available for
borrowing. When the 1 in the column is borrowed, it leaves a 1 in the fourth
column and becomes 2 in the third column. The subtraction of 1 from 2
yields a difference of 1. Subtraction of the fourth column, 1 minus 1, gives 0.
Finally, the fifth column subtraction is 0 minus 0, giving 0. This example
shows the subtraction discussed above and includes the expanded form
check:

Binary Subtraction
10101,
— 01110,
00111,

Expanded Form Check
(Ix16) + (O0x8) + (I1x4) + (0x2) + (Ix1) = 2l
Ox15) + (I1x8) + (1x4) + (1x2) + Ox1) = —14y
710
0x16) + (0x8) + (Ix4) + (Ix2) + (Ixl) = Ty

Subtracting Octal Numbers

If borrowing is necessary in subtracting octal numbers, the decimal
equivalent of 8 is added to the column needing to borrow. Let us do the sub-
traction problem of taking 275 from 734. In the first column, we subtract 5
from 4, so borrowing is necessary. A 1 in the second column (eights column)
is equal to 8 in the first (ones column). When 1 is borrowed from the second
column, 1 is subtracted from the second column digit and 8 is added to the
first column digit, 4, giving a total of decimal 12. Taking 5 from 12 results in
a 7for the first column value. In the second column, we subtract 7 from 2,

188

tutorial

and again borrowing is necessary. Borrowing 1 from the third column (the
sixty-fours column) adds 8 to the second column digit, 2, for a total of 10.
Subtracting 7 from 10 results in a difference of 3. The last column has 2 to be
taken away from 6, leaving 4. The following illustrates the octal subtraction
problem solution with the use of the expanded form check:

Octal Problem

7344
—~ 275,

437,

Expanded Form Check

(7x64) + (3x8) + (4x1) = 476,
(2x64) + (Tx8) + (5x1) = =189,
28714

@Ax64) + (3x8) + (Tx1) = 287y

Subtracting Hexadecimal Numbers

Subtracting in this number system is most easily performed by employing
decimal equivalent values for the symbols of A through F as we did in the ad-
dition operation. Let’s do the subtraction of hexadecimal 48F from A7B.
The first column is the subtraction of F (decimal 15) from B (decimal 11).
Borrowing is required. Borrowing 1 from the second column adds the base,
16, to the first column. Now we subtract 15 from 27, resulting in a value of
12 for the first column. This is converted to a hexadecimal C. In the second
column, we subtract 8 from 6 (note, it is not 7 because we borrowed 1), and
again we need to borrow. Borrowing 1 from the third column adds 16 to the
second column which reduces A (value of 10) to a decimal 9. Then, 16 plus 6
gives a total of 22, Taking 8 from 22 leaves decimal 14, or hexadecimal E.
Finally, in the last column, subtract 4 from 9 for a value of 5. The solution of
this problem with the use of the expanded form check follows:

Hexadecimal Subtraction

ATBio
- 48Fm

5ECe

Expanded Form Check

(10x256) + (Tx16) + (11x1) = 92683,
(4x256) + (8x16) + (15x1) = 1167,

1516,
(5x256) + (14x16) + (12x1) = 1516,

Two’s Complement

Subtraction can be carried out by the addition of complements, which
means that only the hardware circuitry for the addition operation is used.

189

tutorial

The meaning of the phrase “subtraction by addition of the complement” is
made clear by the following example of decimal arithmetic. Suppose the six-
digit decimal number 235,481 is to be subtracted from 684,673. This might
be done conventionally:

684,673 — 235,481 = 449,192
The subtraction can also be done by the addition of the ten’s complement as
is shown in the next three computations,
684,673 + (1,000,000 — 235,481) — 1,000,000
The parenthesized term (1,000,000 — 235,481) is called the ten’s (related to
base 10) complement of 235,481, It yields:
1,000,000
_ = 235481
764,519 (ten’s complement)

Note that the ten’s complement can be written down by inspection, by sub-
tracting each digit of the number from 9, and then adding 1 to the low-order
(least significant) digit at the right. Adding the ten’s complement to the min-
uend we have:
684,673
+ 764,519
1,449,192
To subtract 1,000,000 from the answer, it is necessary only to drop the high-
order (most significant) digit at the left. The final sum is 449,192, which
agrees with the result obtained earlier from conventional subtraction. The
two’s complement and one’s complement in binary notation are analogous
to the ten’s complement and nine’s complement of the decimal number.
Take the two’s complement of 00111001 by first subtracting as follows:
100000000
= 00111001
11000111
Note that this actual subtraction is not required, since the two’s complement
can be obtained by inspection of the number. Each bit of the birary number
is simply inverted (1 is changed to 0, and 0 is changed to 1), and a 1 is added
to the low-order (least significant) bit at the right. Circuits for inversion are
simple.

The binary 00111001 was inverted providing the binary 11000110, then 1
was added to get 11000111, which is the two’s complement of 00111001, In
short, there are two steps in all binary cases.

1) Invert each digit of the binary number,

2) Add a 1 to the rightmost digit (least significant bit).

An example of the subtraction of a binary number is given below. The prob-
lem is to subtract decimal 3 from decimal 9 using a four-bit binary notation
with two’s complement.

190

tutorial

9,y Minuend 1001
~3i0 Subtrahend -0011
6,0 Difference ?
Form the two’s complement of the minuend by first changing the sub-
trahend 0011 to 1100 (by inverting) and then adding a 1 bit to the LSB. This
yields 1101 as the two’s complement of the subtrahend. Now perform addi-
tion as follows:

1001 (two’s complement)
+ 1101 (two's complement)
10110
The binary addition carries a bit into the fifth column which is ignored or
dropped. The difference is 0110 or decimal 6. This checks with 9, ~ 3,0 =
6,0 done previously.
Many microcomputers do have a distinct subtraction (hardware cir-
cuitry) operation. Then, of course, the basic laws of binary subtraction, as
shown in Figure 1, are used instead of the two’s complement procedure.

Conclusion

Computers, in general, operate in binary numbers, and to understand the
working of a computer, you must understand the binary number system. A
number expressed in binary numbers, or in its shortcut notations of octal and
hexadecimal numbers, can also be expressed in decimal numbers. As long as
the basic rules of arithmetic are observed, the result of any calculation leads
to equivalent results.

191

UTILITY

TRSDOS Multiple Command Processor
Dandyzap
Slow Scroll

193

UTILITY

TRSDOS Multiple Command Processor

by Philip Sherman

Achained—command processor lets you enter a single command that then
automatically executes a series of commands. NEWDOS/80 provides
this option; TRSDOS doesn’t. I soon tired of keying in the same set of DOS
commands to start up my system; so I decided to find a way to set up a
chained-command processor for TRSDOS.

My search started with Radio Shack’s manuals. The Level II BASIC
manual storage map shows that the keyboard has a DCB (device control
block) located at 4012H (hexadecimal address). Locations 4016H and 4017H
contain the address of the driver routine that is used whenever a character is
to be read from the keyboard. When TRSDOS 2.3 is loaded from disk, the
ROM driver address is changed to a TRSDOS driver that includes a
keyboard debounce routine. The lowercase keyboard driver from Radio
Shack also modifies the contents of 4016H and 4017H. I decided that by
replacing the keyboard driver address with my own driver I could feed it a
series of commands to be executed.

CHAINED
COMMAND PROCESSOR

BUILD ALTER DCB PROCESS
COMMANDS DRIVER ADDRESS COMMANDS

F—l_—l

FEED NEXT RESTORE DCB
CHARACTER DRIVER ADDRESS

Figure 1. Hierarchy of the chained-command processor

Figure 1 is a hierarchy diagram of my chained-command processor. My
requirement of a single command to start up my system forced me to write
this program in assembly language. To simplify the initial version of the pro-
gram, the BUILD COMMANDS function was replaced by a fixed list of
commands. When you change the keyboard DCB driver address, you must
save the old address so that it can be restored when the program is finished.
The PROCESS COMMANDS function feeds the next character in the com-
mand string to whatever program requested the keyboard input. When the
last character is fed, the original DCB driver address is restored, reenabling
the keyboard.

195

utility

Program Listing 1 is the assembler version of the multiple-command ex-
ecuter. Lines 130 through 170 save the existing driver address at 4016H and
4017H and replace it with the driver in lines 180 to 340. Figure 2 is a
flowchart of the driver, which is also the PROCESS COMMANDS function
of the Figure 1 hierarchy diagram.

190200

SAVE HL&BC
REGISTERS

210

GET NEXT CHAR
POINTER

220

PUT NEXT CHAR

INTO C REG
230-240

INCREMENT 8

SAVE NEXT
CHAR POINTER

250~270
280-250

RESTORE OLD
DCB DRIVER ADDR

310 320~330

PUT NEXT CHAR RESTORE
INTO A REG BCBHL REGS

END OF
COMMANDS
?

Figure 2. Driver flowchart

The ENTER key, when pressed, generates the code 13 (decimal). The
code 24 is the end-of-commands indicator I chose. This code (shift and left ar-
row) is normally not used when entering commands because it erases the line
being entered. The command list I used in the sample program starts
BASIC, defines four disk file buffers, sets BASIC’s memory size to the maxi-
mum available, and starts execution of a program called Menu. When 1
placed the program on my TRSDOS diskette, I gave it the filespec
IPL/CMD. I set the AUTO (TRSDOS) function to invoke IPL when TRS-
DOS was initially loaded. Everything worked fine; I had a multiple-
command processor that was invoked whenever TRSDOS was loaded. But,
I detected two possible problem areas in my analysis of the technique. Since
my command processor modified the keyboard driver address, I could not
modify the driver address while the command processor was running. I also
had to make sure that no program being loaded or executed would overlay
the command processor program.

Changing the ORG statement (line 100) of Program Listing 1 will move
the program to other memory locations. Use it to place the program where it
won't be overlayed. Don’t forget that BASIC has a work area at the top of

196

utility

memory which it uses during its initialization. For a 32K or 48K RAM
machine, setting the multiple-command processor load address 2K (800H)
below the top of memory should be safe for most applications.

When I need to use a lowercase driver, I set the AUTO command to load
the lowercase driver. When DOS’s READY message appears, I enter the IPL
command which then executes my list of commands.

The BASIC Program

Most software for the TRS-80 is written in BASIC. On my one-drive
system, it is a chore to write software in assembly language and transfer it to
a disk used for BASIC programs. I decided to rewrite the program in BASIC
to make it easy to change the command list. Once again, I started with a
hierarchy diagram of the program. Figure 3 shows the functional units of
the BASIC version of the multiple-command processor. Program Listing 2 is
the BASIC program written to implement the functions defined in Figure 3.
I wrote the program in structured form to make debugging easier. All blocks
of code are small enough that the entire block can be displayed on the
monitor at once. This makes tracing detailed logic much easier.

Line 10 is a heading line giving the disk filespec name and the date of the
last update. Lines 50 through 300 are the mainline processing routine.

BASIC CHAINED
COMMAND PROCESSOR

l l l |

! DISPLAY J [GET OUTPUT 1 [SETUP DUMP l I EXECUTE l

INSTRUCTIONS ADDRESS COMMAND DUMP COMMAND

GET PUT PROGRAM PUT DUMP COMM
COMMANDS IN MEMORY IN MEMORY

Figure 3. Functions of the BASIC command processor

Lines 50 and 60 set up string space, make BASIC treat all variables start-
ing with the letter S as strings, and assign initial values to the variables to be
used later.

Lines 70 through 90 display the title screen. Line 90 leaves the title screen
on the video display while a counter is decremented 2000 times. The display
is then cleared.

Lines 100 through 200 invoke the functions shown on the hierarchy
diagram (see Figure 3). Each line has a REMark statement describing its
function.

Line 280 moves the load address for the command processor down 256
bytes in memory and adds the ENTER and end-of-data characters to the
DUMP command. Line 290 then causes the command processor to be POKEd
into memory with the DUMP command as the command to be executed.

197

utility

Line 300 sets the BASIC USR function to the starting address of the
DUMY command version of the command processor. Once this is done, the
USR function is invoked, transferring control to the command processor.
The command processor will not return to the BASIC program.

Lines 3000 to 3100 get the string of commands to be executed. Since press-
ing ENTER tells the computer to read data, the INKEY$ function reads the
keyboard directly. Figure 4 is the flowchart of this short but complex func-
tion. Remember that this function expects the first character to be available
to it ‘when it is invoked. Line 110 performs the read-a-character portion of
the program once before starting this function.

START

YES
END OF INPUT

?

NO

ADD LAST CHAR
TO COMMANDS

NO YES
BACKSPACE

2

NO YES
ENTER KEY

LENGTH
OF COMMANDS
>

P

ADD CHARACTER ADD GRAPHICS CHAR SET COMMANDS SHORTEN COMMANDS
TO COMMANDS TO COMMANDS TO NULL STRING I CHARACTER

PRINT COMMANDS
GET NEXT
CHARACTER

Figure 4. Flowchart for lines 3000 to 3100 which read INKEY$ function directly from keyboard

END=24
ENTER=13
BACKSPACE=8

Line 3010 first checks for an end-of-data character. If it is not found, lines
3020 and 3030 process the character, then the next character is read from the
keyboard. When the last character has been read, it is added to the end of
the command string, and the input routine returns to its caller by executing
the RETURN command.

Line 3020 will shorten the command string if a left arrow (code 8) key is
read. If an ENTER key is read, it is replaced with a graphics block using the
code 140. All other characters are appended to the end of the string being
built.

198

utility

Line 3030 erases the screen, writes the current command string, and
returns to line 3010. Clearing the screen and rewriting the string is the
simplest way to keep the current string displayed.

Lines 4000 to 4040 get the execution address of the command program.
This address will be used to POKE the program and command string into
memory.

Line 4010 initializes the string variable S to null. L is set to the default ex-
ecution address of 47360. When L is initialized, the value chosen is the ex-
ecution address divided by 256. The integer portion of this division is the
high-order byte of the execution address.

Lines 4020 and 4030 display the instructions for entering the execution
address. Line 4040 reads the desired execution address into string S. If no
string is entered, the default execution address in L is used. If a string is
entered, it is converted to numerics, divided by 256, and its integer portion
replaces the default value in L.

Note: When a string is used for input, as in line 4040, you can enter non-
numeric characters without BASIC catching them as errors. Since I designed
this program to be used by an experienced person, I did not put in a code to
validate the execution address supplied.

Lines 5000 through 5110 build the DUMP command used to place the
program on disk. When this routine is invoked, variable L must be pointing
to the starting (/256) address of the program to be dumped, and variable I
must point to the last byte of the program being dumped. Line 5010 sets the
SX string to the characters used in hexadecimal numbers.

Line 5020 sets the input variable for the hexadecimal converter, invokes
the hex converter, and uses its output to build the hexadecimal starting ad-
dress of the program to be dumped. Line 5030 uses the hex converter to get
the low-order portion of the ending address to be dumped. The high-order
portion of this address is set to the same value as the starting address to be
dumped. The net effect of this is that the multiple-command program and
the list of commands to be dumped must be no longer than 255 bytes. This is
not a serious restriction, because it leaves 210 characters for the command list.

Either line 5040 or line 5045 builds the rest of the DUMP command. Line
5045 is not executed, because there is a quotation mark in the first byte of the
line. If you are running this program under NEWDOS/80, remove the quo-
tation mark to get the correct DUMP command.

Lines 5050 through 5070 tell you that the multiple-command program
has been POKEd into memory and displays the DUMP command that has
been built. If you don’t want to continue the program execution, you can
abort the program here by pressing the BREAK key.

Line 5080 requests the entry of an SX string. This is done to hold the
messages on the display and permit using the BREAK key to stop the program.

Lines 5100 through 5110 contain the hexadecimal converter. The input is

199

utility

pased to the converter in the variable M; the output is generated into the ST
sting variable. Line 5100 breaks the input number into two hex digits
which will have values between 0 and 15.

Line 5110 uses these hexadecimal digits to index into the SX string and to
get the hex character for the digit. Since BASIC does not let you get the
character of a string, a zero adjusting factor of one is added to each hex digit.
The hex digit values will now fall into the range of 1 to 16 which matches the
length of the SX string.

Lines 6000 through 6090 POKE the control program and the commands
tobe executed into the selected memory locations. When this routine is in-
voked, L is used as a pointer to the starting location for POKEing, and SF
must contain the list of commands to be POKEd. When it is finished,
variable I will point to the last memory location being used by the multiple-
command processor.

Line 6010 sets the initial value of I by multiplying L by 256. If I is greater
than 32767, the POKE addresses must be expressed as negative numbers.
The IF statement sets A to either zero or 65536 to make this adjustment. Line
6020 resets the data pointer to the first data statement in the program and
reads the first byte to be POKEd into memory.

Line 6030 is the control structure for a DO-WHILE function. As long as |
is less than 256, the routine in lines 6040 and 6050 will be invoked. J is in-
itialized in line 6020 before the IF test is done in line 6030. When the value
256 is read into], it indicates that the DO-WHILE function has been com-
pleted. The routine in lines 6040 and 6050 is bypassed with the GOTO 6060
statement.

Line 6040 handles relocation of addresses in the program being POKEd
into memory. The value 190 occurs only as the high-order byte of an ad-
dress. Since the program will always start on a 256-byte boundary, only this
byte of addresses must be changed to relocate the program.

Line 6050 POKEs the program byte into memory. The constant A is used
to change POKE addresses to negative numbers when the POKE addresses
are greater than 32767. After a byte has been POKEd, the POKE address in
I is incremented.

Lines 6060 through 6090 are a DO-UNTIL construct which POKEs the
command list into memory. Line 6060, the FOR statement, uses the length
of SF to determine how many characters are to be processed.

Line 6070 replaces the graphics block (140) with a 13 (ENTER) before
POKEing it. Other characters are POKEd as they are. Line 6080 increments
the storage address and closes the FOR statement. Line 6090 returns to the
caller.

Lines 7000 through 7030 are DATA statements containing the machine-
language code of the assembler program shown in Program Listing 1.

Lines 8000 through 8260 contain the instructions for running the pro-

200

utility

gram. If you remove line 100, the instructions will not be displayed.

Notes

The TRSDOS DIR command does not stop reading characters from the
multiple-command processor when the ENTER code is passed to it. The di-
rections show that five spaces are needed after the ENTER key to process the
next command properly. You may need to adjust the number of spaces if the
next command is not processed properly. The multiple-command processor
can be used to load a lowercase driver if it is the last command to be ex-
ecuted. Since the command processor restores the keyboard DCB driver ad-
dress before executing the last command, the alteration of the driver address
by the lowercase driver occurs after the command processor program has
finished.

201

utility

Program Listing 1. Assembly-language multiple command processor

BEOO 00100 ORG OBEOOH Encyclopedia

000D 00110 ENTER EQU 13 Loader

0018 00115 DEND EQU 24

4016 00120 DVRADR EQU 4016H

BEOO 201640 00130 BEGIN LD HL, (DVRADR)

BEO3 2228BE 00140 LD (0LDCB), HL ;SAVE DRIVER ADDRE
5§

BEO6 210FBE 00150 LD HL, DRVR

BEQ9 221640 00160 LD (DVRADR) , HL

BEOC (32D40 00170 ap 402DH

BEOF 00180 DRVR EQU §

BEOF £5 00190 PUSH HL

BELD (5 00200 PUSH BC

BE1l 202ABE 00210 LD HL, (PTR)

BE14 4 00220 LD €, (HL) LGET NEXT CHAR

BE1S 23 00230 ING HL

BE16 222ABE 00240 LD (PTR), HL JSAVE POINTER

BE19 JE 00250 LD A, (HL)

BEIA FE18 00260 cp DEND JEND DATA?

BELC 2006 00270 JR NZ,MORE . NO

BEIE 2A28BE 00280 LD HL, (OLDCB)

BEZ1 221640 00290 D (DVRADRY , HL ;RESTORE KB DRIVER

BE24 00300 MORE EQU §

BE24 79 00310 LD A,C

BE25 (1 00320 POP BC

BEZ26 I 00330 POP HL

BEZ7 (9 00340 RET

0002 00350 OLDCB DEFS 2

BE2A 20BE 00360 PTR DEFW CMDS

BE2C 6 00370 CMDS DEFM 'VERIFY'

BE32 O 00380 DEFB ENTER

BE33 @2 00390 DEFM 'BASIC'

BE38 0 00400 DEFB ENTER

8E39 3 00410 DEFM ‘4

BE3A 0 00420 DEFB ENTER

BE3B (0 00430 DEFB ENTER

BE3C 52 00440 DEFM 'RUN"MENU""

8E45 O 00450 DEFB ENTER

BE46 18 00460 DEFB DEND

BEGO 00470 END BEGIN

Program Listing 2. BASIC multiple command processor

10 REM IPL-03/25/81

50 CLEAR 300: DEFSTR S

60 I=0: J=0: K=0: S="": SF=§

70 CLS: PRINT "R/S TRSDOS MULTIPLE COMMAND GENERATOR*
80 PRINT: PRINT "WRITTEN MARCH, 1981 - PHILIP SHERMAN"
90 FOR I=1 TO 02000: NEXT: CLS

100 GOSUBOOO: REM DISPLAY INSTRUCTIONS
110 GOSUB 3100: GOSUB3010: REM GET INPUT STRING OF COMMANDS
120 GOSUB 4010: REM GET EXECUTION ADDRESS

190 GOSUB 6010: REM POKE PROGRAM AND CMDS INTO MEM
200 GOSUB 5010: REM BUILD & DISPLAY DUMP COMMAND
280 L=L-1: SF=S+CHR$(140)+CHR$(24)

290 GOSUB 6010: REM POKE DUMP COMMAND INTO MEMORY
300 DEFUSR=L*256-A: A=USR{1): REM EXECUTE DUMP COMMAND

310 '

3000 REM GET STRING OF COMMANDS

3010 IFASC(S)<>24THENGOSUB3020: GOSUB3100:60T03010EL SESF=5F+S :RETURN

3020 IFASC(S)=BTHENIFLEN(SF)>1THENSF=LEFT$(SF,LEN(SF)-1)ELSESF=""ELSEI
FASC(S)=13THENSF=SF+CHRS (140)ELSESF=SF+S

3030 [LS:PRINTSF; :RETURN

202

3100

utility

S=INKEY$: IFS>""THENRETURNELSEGOTO3100

3110 °

4000
4010
4020
4030
4040

REM GET EXECUTION ADDRESS OF MULTIPLE COMMAND EXECUTER
S="": =185

PRINT:PRINT"ENTER EXECUTION ADDRESS OF COMMAND FILE"
PRINT"PRESS ENTER TO USE DEFAULT ADDRESS OF";L*256

INPUT S: IF S="" THEN RETURN ELSE L=FIX{VAL(S)/256):RETURN

4050 '

5000
5010
5020
5030
5040
5045
5050
5060
5070
5080
5100
5110

REM SETUP COMMAND TO WRITE PROGRAM TO DISK
SX="0123456789ABCDEF"

M=L: GOSUB5100 : SP=§T+"00"

M=1-256*F1X(1/256): GOSUB 5100 SE=LEFT$(SP,2)+ST

S="DUMP IPL/CMD (START=X'"+SP+"', END X'USE+" ! TRA=X ' V4SP+")"
'S="DUMP IPL/CMD:0 "+SP+"H "+SE+"H "+SP+"H"

PRINT “COMMAND PROGRAM BUILT. PRESS ENTER TO PLACE IT ON DISK"
PRINT "USING THE FOLLOWING DOS COMMAND"

PRINT S

INPUTSX: RETURN

J=INT(M/16): M=M-16*J

ST=MID$(SX,J+1,1)+MID${SX,M+1,1}: RETURN

5120 '

6000
6010
6020
6030
6040
6050
6060
6070

6080
6090

REM POKE PROGRAM AND COMMAND(S) INTO MEMORY

[=L*256: IF 1>32767 THEN A=65536 ELSE A=0

RESTORE: READ J

IF J<256 THEN GOSUB 6040 : READ J: GOTO 6030 ELSE GOTO 6060
IF J=190 THEN J=L

POKE I-A,J: I=I+1: RETURN

FOR J=1 10 LEN(SF)

IF ASCg?IDS(SF ,J,1))=140 THEN POKE I-A,13 ELSE POKE I-A,ASC{MID$(
SF,Jd,1

I=1+1: NEXT

RETURN

6100 '

7000
7010
7020
7030

DATA 42,22,64,34,40,190,33,15,190,34,22,64

DATA 195,45,64

DATA 229,197,42,42,190,78,35,34,42,190,126,254,24,32,6
DATA 42,40,190,34,22,64,121,193,225,201,0,0,44,190,256

7040 '

8000
8005
8010
8020

8030

8040
8050
8060
8070
8080

8090
8100

8110
8120
8130
8140
8150
8160

8170
8180

8190
8200
8210

REM DISPLAY INSTRUCTIONS

PRINT"This program will generate and write to disk a"
PRINT"program for you that will execute multiple commands when"
PRINT"you execute it. If you set the AUTO command to the output o
0

PRINT"this BASIC program, the commands will be executed every tim
et

PRINT"TRSDOS is loaded from disk."”

PRINT:PRINT

PRINT"THE COMMANDS EXECUTED CANNOT INCLUDE ANY COMMAND THAT *
PRINT"MODIFIES THE KEYBOARD DRIVER ADDRESS."

PRINT: PRINT"This includes all known versions of lower case keybo
ard drivers."

PRINT: INPUT"Press enter key to continue";ST

CLS:PRINT"When the screen clears, you can enter your input comman
ds."

PRINT"Enter them exactly as you would if you are starting your"
PRINT® system from the first DOSD READY."

PRINT"Press the enter key exactly as you would do during startup.

PRINT"To end the input phase of the program, press the SHIFT and"

PRINT" backspace (";CHR$(93);") keys. “";CHR$(93);" will backs
pace 1 character.’
PRINT"The execution address must be someplace in memory that will

PRINT™ not be overlayed by any program being executed."
PRINT"The automatic write to disk routine requires the 256 bytes"

PRINT" of memory below the starting address you supply.”
PRINT" This must not overlay any part of this BASIC program.
PRINT"The default address is good for a 32k machine. Program continued

203

utility

8220 PRINT"Some sample commands are {*;CHR$(140);" is the ENTER key):"

8230 ST=CHR$(140):PRINT" VERIFY";ST;"DIR";ST;" or DIR";ST;"
VERIFY";ST;" (SPACES REQUIRED HERE)

8240 PRINT" VERIFY";ST;"BASIC";ST;"4";ST;ST;"RUN";CHR$(34);"MENU";CHR
$(34) ;ST

8250 INPUT"Press the enter key to start the program";SX

8260 CLS:RETURN

204

UTILITY

Dandyzap

by Richard T. Sornborger

he Dandyzap program is a TRSDOS-dependent utility with the capa-
bilities of examining, modifying, or searching any desired bytes on a
disk.
Both F3GUM and NV36 are master passwords for TRSDOS. With the
master password in hand, you have access to any system file on any disk.

Getting Started

If you are using a disk-based editor assembler, type the code as shown in
the Program Listing. If you have the tape version, you have to set ORG in
line 190 greater than 6FFFH. You must then use the DUMP library com-
mand to get it onto disk. I wrote Dandyzap so you can relocate it by chang-
ing the ORG. No other modifications are necessary to relocate the program.

Operation

Mode 1 displays any given sector on a disk. When prompted, simply give
the relative sector number of the desired sector. For example, to see Track
17, Sector 9, enter 179.

When you address the directory, you see a large graphics block at the base
of the screen. This signifies that the sector is read-protected. Press ENTER to
exit this function.

Mode 2 displays any given sector for a filespec. Simply reply with the
desired filespec and give the relative sector within the file. Press ENTER to
exit this function.

Mode 3 displays the encode for a password. Reply with the password you
want, Type X to exit this function after the password has been generated.
Pressing ENTER continues this mode.

Mode 4 displays the hashcode for a filespec. Simply respond with the
desired filespec. Typing X aborts this function after the hashcode has been
generated. Pressing ENTER continues this mode.

Mode 5 returns you to DOS READY. A reboot does not occur.

While you are in Modes 1 or 2, if a sector is being displayed, pressing the
semicolon (;) key advances to you the next sector. The hyphen key (-)
displays the preceding sector. The X key returns you to the main menu. The
M key puts you in the modify mode. The S key puts you in the search mode.
The T key toggles between drives 0 and 1. The T function is valuable when
comparing two disks.

205

utility

In the modify mode, responding with the desired relative byte within the
sector after pressing the M key initiates a blinking cursor at the desired loca-
tion. From this point, use the four arrow keys to guide the cursor. The
relative position of the cursor is displayed in the lower left part of the screen.
The Q key reads the sector again and aborts the modify mode; any valid key
entry (0-9, A-F) is displayed in the sector. If the cursor is blinking on the sec-
ond nibble of any given byte, only valid keys (0-9, A-F) are accepted. You
must be on the first nibble of a byte to abort the modify mode or write to the
disk.

If you are in the modify mode and you press the ENTER key, a mini-
menu is displayed. The Y key writes the sector with the same read protection
that was previously contained for that sector. The P key writes the sector
read protected (as in a directory sector). The C key writes the sector non-
read protected (as in any non-directory sector). The N key aborts the write
function and displays the sector with modifications, if any, still intact.

Responding with the S key initiates the search mode. When you press the
S, alarge graphics block appears at the top left of the display. You may enter
from one to four hex bytes that you want to search. If a match is found, a
blinking cursor marks the match, and you immediately enter the modify
mode. If you press ENTER after the S key, the search continues until the
next occurrence is found or END OF FILE is encountered.

If you press an incorrect key, enter X to start over. If you wish to stop the
search while it is in progress, press the X key. This ends the search and
displays the sector at which the search was aborted.

This program fits into a 48K system with 8K to spare. It should fit into a
32K machine if you remove the comments.

Figure 1 shows two zaps to try on your TRSDOS disk. Remember to make
a backup before you apply them.

Zap 1: To disable passwords
SYS2/SYS

FILE RELATIVE SECTOR 1
RELATIVE BYTE 5D
CHANGE: A2 61

TO: 96 42

Zap 2: To make BREAK more stable.
SYS1/8YS

FILE RELATIVE SECTOR 0
RELATIVE BYTE E4
CHANGE: 28

TO: 20

Figure 1. Two TRSDOS zaps

206

5200
5200
5203
5206
5209
520C
520F
5211
5214
5216
5219
521B
521E
5220
5223
5225

5227
522A
522D
5230
5233
5235
5238
5239
5238
5230
5240
5244
5247
524A
524D
524F
5252
5253
5255
5257
5259
525C
525F
5262
5265
5268
526A
526D
5270
5271
5274
5275
5277
527A
5270
527F
5282
5285
5288

21£958
CD9C55
CDDC5B
€D3300
321956
FE32
CA4553
FE33
CA0555
FE34
CA4455
FE35
CAQ044
FE31
20DF

CDAG655
21BES8
CDIC55
21F255
0603
€D4000
7E
FEQD
28C3
CD5AILE
ED53DC55
210958
CD9Cs5
21F255
0601
CD4000
7E
FEOD
28F6
D630
32D855
11D255
(D3644
321256
CA9ES3
FEO6
CA9ES3
214354

F6CO

(D0944
3A1956
FE32

CA7FS3
21€Cs7
CD9C55
21F255

utility

Program Listing. Dandyzap

Encyclopedia

00100 ;*************‘k*****‘k********#*************************** Lmr

00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760

WRITTEN BY,

PHONE 707-553-1369

DANDYZAP VERSION 1.0

R.T SORNBORGER

268 TEMPLE WAY

VALLEJO, CALIF.
94590

L A B

TKKRE KRR KRR KRR AR AR R KRR AR AR KRR KREREARRI AR AR AR AR AR AR AR AR A A AKX

ORG
START LD
CALL
MENSCN CALL
CALL
LD

5200H
HL , MENU sMENU OF COURSE...

DPLAY JDISPLAY IT 1!

KYBRD READ KEYBOARD

33K

(MSAVE), A SSAVE MODE

324 JWAS IT ¥2°

Z,DFS J1F SO GO TO FILE ROUTINE
334 JWAS IT “3°

7,DPH 2GO TO PASSHORD HASHCODE
344 JWAS IT g

Z,DFHC GO TO FILE HASHCODE

35H

7,4400H 4GO TO DOS

31H

NZ,MENSCN sIF INVALID THEN RE-SCAN

s e e e e L e e e e T T L 22
2

[DISPLAY DISK RELATIVE SECTOR ROUTINE *

AR KRR KRR K RRR R AR R KA R KRR R AR KA KA RKR IR R KRAR KRR RAR KA RR AR AR KA KK
]

AB CALL
LD
CALL
LD

AB1 LD
CALL
LD

AB2 LD

REREAD LD

OVERT LD

MFCB 5MOVE FILE CONTROL BLOCK
HL,DSN 3DISK SECTOR QUESTION
DPLAY ;DISPLAY IT 1!}

HL, INBUF 3 INPUT BUFFER LOCATION
B,03H JMAXIMUM 3 CHARACTERS
40H 3ROM INPUT ROUTINE

A, (HL)

0DH

Z,START

1E5AH ;CONVERT INPUT TO HEX
(AFCB+0AH),DE ;SECTOR NUMBER TO FCB
HL,DN ;"DRIVE NUMBER QUESTION"
DPLAY sBISPLAY IT

HL, INBUF

8,01H 51 CHARACTER INPUT

40H sROM INPUT ROUTINE

A, (HL) JGET DRIVE NUMBER

0DH

Z,AB2

30H ;SUB BIAS

(AFCB+06H),A iDRIVE NUMBER TO FCB
DE,AFCB ;POINT TO PSUEDO FCB
4436H sREAD SECTOR

(PSAVE),A ;SAVE READ STATUS

Z,5K5

06H ;SECTOR READ PROTECTED ?
Z,SK5 ;JUMP IF ERRORCODE 6
HL,CLS

AF

DPLAY

AF

OCOH 3SET BITS 6 & 7

4409H ;DOS DISPLAY ERROR

A, (MSAVE)

324

Z,S5KIP5

HL,RETRY s"CARE TO RETRY MESSAGE"
DPLAY ;DISPLAY MESSAGE

HL, INBUF 3 INPUT BUFFER Program continued

207

5288 0601
528D CD4000
5290 7E
5291 FE59
5293 2008
5295 213F5A
5298 CDIC55
5298 18BF
529D FE4E
529F CADOD52
52A2 18t4

52A4 E5
52A5 D5
52A6 C5
52A7 CD1A56
52AA 11003C
52AD 214AS5A
52B0 CDC357
52B3 11403C
5286 3AD855
52B9 C630
52BB 12
52BC 11C03C
52BF 214D5A
52C2 CDC357
52C5 210030
52C8 3AED37
52CB CDAOS56
52CE 71
52CF 23
5200 70
52D1 118030
52D4 21505A
52D7 CDC357
52DA 21C03D
520D 3AEE37
52E0 CDAQS6
52E3 71
52E4 23
52E5 70
52E6 3A1956
52E9 FE32
52EB 283E
52ED CDF252
52F0 1839
52F2 11403t
52F5 21565A
52F8 CDC357
52FB 21803E
52FE E5
52FF 2ADC55
5302 3A1256
5305 FEO6
5307 2801
5309 2B
530A AF
5308 010A00
530E ED42
5310 3803
5312 3C
5313 18F9
5315 09
5316 EB
5317 E1
5318 CDADS6
5318 79
531C FE30

00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460

SK4

*

P

-

SK1

ABD

ABE

ABH
ABB

ABC

JR

PUSH
PUSH
PUSH
CALL
LD

utility

B,1 ;ONE CHARACTER INPUT
404 sROM'S INPUT ROUTINE
A, (HL) :GET INPUT KEY
59H JTRY AGAIN {Y)
NZ,SK4 ;JUMP IF NOT ™y"
HL,CLMESS ;CLEAR SCREEN OF ERROR
DPLAY ;DISPLAY CLMESS
REREAD ;00 IT AGAIN...
4EH sBACK TO MAIN MENU
1,START SOUMP IF "NY
OVERL JINVALID INPUT
PRAEE A A A A KA KRR AR I AEAAIARKRRERARARR A AR IR AR AR AR A KA K *A*
DISPLAY DRV, TRK, SEC *
Pk kk Ak kA kK kA hkkhhkAhhkhk Rk hhrkhkhrkAThkhkhhkhkhkkrAXEhkIARA R AR R K hhhKx
HL
DE
BC
SCREEN JDISPLAY BUFFER TO SGREEN
DE, 3C00H DRV MESSAGE LOCATION
HL,DRV ;POINT TO MESSAGE
THREE ;DISPLAY "DRV"
DE, 3C40H ;DRIVE NO. LOCATION
A,(AFCB+O6H) ;GET ASCII DRIVE NO.
A,30H JMAKE IT ASCII
(DE),A ;70 VIDEO...
DE, 3CCOH JTRK MESSAGE LOCATION
HL, TRK sPOINT TO MESSAGE
THREE ;DISPLAY "TRK"
HL , 3D00H ;TRACK NO. LOCATION
A, (37EDH) sGET TRACK NO.
BTOA JCONVERT TO ASCI! DECIMAL
(HL),C MSB OF TRACK NO.
HL ;BUMP VIDEO
(HL),B ;LSB OF TRACK NO.
DE, 3080H s"SEC" MESSAGE LOCATION
HL,SEC ;POINT TO MESSAGE
THREE ;DISPLAY “SEC"
HL, 3DCOH ;SECTOR NO. LOCATION
A, { 37EEH) JGET SECTOR NO.
BTOA ;CONVERT TO ASCII DECIMAL
(HL),C 1MSB OF SECTOR NO.
HL 1BUMP VIDEO
(HL),B ;LSB OF SECTOR NO.
A, (MSAVE) JWHICH MODE ARE WE IN ?
32H ;DISPLAY FILE'S SECTOR ?
Z,ABA JIF S0 GO...
ABD :DISPLAY "REL" MESS
ABA
DE, 3E40H
HL,REL POINT TO "REL" MESSAGE
THREE JDISPLAY IT
HL , 3E80H
HL
HL, (AFCB+0AH) ;GET RELATIVE SECTOR
A, (PSAVE) ;GET PROTECTION STATUS
06H ;IS IS THE DIRECTORY ?
7,ABH :IF SO GO...
HL ;ADJUST RELATIVE SECTOR
A iCLEAR CARRY AND COUNTER
BC,0AH
HL,BC ;SUB 10 TILL CARRY
C,ABC
A ;BUMP “A" FOR EVERY SUB
ABB ;LOOP TILL CARRY
HL, BC ;RESTORE "HL"
DE,HL ;SAVE REMAINDER IN "DE"
HL ;GET VIDEO LOCATION
BTOA ;CONVERT TO ASCII
AC
300 sIF "0" THEN BYPASS

208

531E
5320
5321
5322
5323
5324
5325
5326
5329
532A
5328
532C
532D
532€
532F

5332 E

5333
5334
5335
5338
5338
533E
5341
5342
5343
5344

5345
5348
5348
534D
5350
5353
5354
5356
5359
535A
5350
535F
5362
5364
5366
5369
536C
536F
5372
5375
5378
537A
537D
537F
5382
5385
5387
538A
538D
538E
5390
5392
5395
5398
5399
539A
5398
539E
53A1
53A3
53A5

21F657
CDIC55
0610
210255
CD4000
7E
FEOD
CAD052
EB
210060
0600
CD2444
2818
F6CO
CD0944
21DC57
€DIC55
CDDC5B
213F5A
CDICS5
3E18
CD3300
18C6
211058
CD9C’5
0603
21F255
Cb4000
7E
FEOD
28F3
CD5ALE
21DC55

£35C52
3A1956
FE32
2005
CD2F53

01470
01480
01490
01500 ABF
01510
01520
01530 ABG
01540
01550
01560
01570 ABA
01580
01590
01600
01610 SK2
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740 ;*
01750 ;
01760 DFS
01770

01780

01790

01800

01810

01820

01830

01840
01850

01860

01870

01880

01890 ERRO
01900

01910

01920
01930

01940

01950

01960

01970

01980

01990 SKIP5
02000

02010 DFS1
02020

02030

02040

02050

02060

02070

02080

02090

02100

02110

02120

02130 SK5
02140

02150

02160

LD
LD
CALL
CALL
poP
pop
PoP
RET

DE, 3E40H
HL,FRS
THREE
ABE

BC

DE

HL

;BUMP VIDEO

;GET REMAINDER

;CONVERT TO ASCII

;TO VIDED

;DISPLAY SCREEN

sPOINT TO "FRS" MESSAGE

;DISPLAY IT...

;DISPLAY FILE'S SECTOR

MODE 2 - DISPLAY FILES SECTOR

HL,FILESP
DPLAY
8,10H
HL,AFCB
404

A, (HL)
ODH

7,START
DE, HL
HL, 6000H
B,00H
44244
7,5KIP5
OCOH
4409H
HL, CONT
DPLAY
KYBRD
HL,CLMESS
DPLAY
A,1BH
33H

DFS
HL,RIF
DPLAY
8,3

HL, INBUF
40H

A, (HL)
0DH
Z,0FS1
1E5AH

HL , AFCB+O0AH
(HL),E
HL
(HL),D
REREAD
A, (MSAVE)
32H
NZ,SK9
$K2

DR e e T e T T 2 £]

*

AHKRKKKAKRKKEREAKIRRRRRRKARRR AR KL AR TR AA R R AR AR AR R IR R I kAR

;POINT TO “FILESPEC" MESS

;DISPLAY IT

3 INPUT FILESPEC

; INBUT BUFFER TO DE
;READ BUFFER LOCATION

JLRECL
JOPEN FILE

3JUMP IF OPEN SUCCESSFUL

;DISPLAY ERROR

;CONTINUE MESSAGE

sREL SEC WITHIN FILE MESS

;3 CHARACTER INPUT MAX.

sFIND MODE
;1S IT MODE 2 ?

Program continued

209

53A8
53AA
53AD
5380
53B2
5384
5387
53B9
53BA
538BC
53BF
53C1
53C3
53C5
53C7
53C9
53CC
53CE
5300
5302
53D5
5307
5309
5308
53DE
53E0
53E2
53E4
53E6
53E8
53EA
53EC
53EF
53F2
53F5
53F7
53FA
53FD
53FE
5401
5404
5407
5408
5409
5408
540C
5400
540F
5412
5414
5416
5417
5418
5418
541E
5421
5424
5426
5427
5427
5420
542F
5430
5431
5432
5433
5434
5435
5436
5437

02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
024390
02500
02510
02520
02530
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650
02660
02670
02680
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02800
02810
02820
02830
02840
02850
02860

SK9
SK10

SCAN

TOGGLE

TOGO
T0G1

INEXT

DNEXT

DNEXT2

DNEXT1

MOD

MODO

utility

$K10
sK1

A, {PSAVE)
06H

NZ, SCAN
HL , 3FCOH
(HL),8FH
L

(HL),8FH
2BH
3BH
Z, INEXT

A,O1H
(AFCB+06H), A
QuIT

A, (PSAVE)
06H

NZ,REREAD

HL , (AFCB+0AH)
HL
(AFCB+DAH), HL
REREAD

HL , (AFCB+0AH)
AH

A
NZ,DNEXT2
A,L

A
Z;DNEXT1
A, (PSAVE)
064
Z,DNEXTL
HL

HL
(AFCB+DAH), HL
REREAD

KYBRD

ATOHEX
NC,HOD

C,A

KYBRD

ATOHEX
NC,M0DD

AF

A,C

C,A
AF
A,C

;GET PROTECTION-STATUS
;IS READ-PROTECTED ?

3 IF NOT THEN SCAN KEYBRD
sFLAG DISPLAY LOCATION
;GRAPHIC FLAG

3 SCAN KEYBOARD

SIS 1T "y

s INCREMENT NEXT

;IS IT "-»

sDECREMENT NEXT

JIS IT X"

3BACK TO MAIN MENU

IS IT "M

;GO TO MODIFY MODE

3IS IT "s"

;GO SEARCH

JIS IT T

;TOGGLE TO OPPOSITE DRIVE
3LOOP TILL KEY PRESSED
3GET DRIVE NO.

;IS 1T DRIVE O

3IS IT DRIVE 1
3NOT 0 OR 1, THEN RESCAN
sMAKE IT DRIVE 0

sMAKE IT DRIVE 1

;PUT IN "FCB"

sREAD IN SECTOR

;GET PROTECTION STATUS
sREAD-PROTECTED ?

3 IF NOT THEN READ NEXT
JGET NEXT

3BUMP NEXT

;BACK TO FCB

3READ NEXT SECTOR

;GET NEXT

3 THIS PREVENTS
3DECREMENTING

3PAST TRACK 0

H SECTOR 0...

;GET PROTECTION STATUS
3IS 1T READ-PROTECTED ?
;DEC NEXT ONE TIME IF SO
3DECREMENT NEXT

JTWICE

3BACK TO FCB

sREAD PRECEEDING SECTOR
3GET FIRST KEY

;CONVERT TO BINARY

31F INVALID...RETRY AGAIN
;SAVE IN “C"

JGET SECOND KEY

;CONVERT TO BINARY
;INVALID KEY...TRY AGAIN
3SAVE SECOND INPUT

36ET FIRST INPUT

;ALIGN TO HIGH 4 BITS

;BACK TO “C*
3GET SECOND INPUT
32 KEYS BECOME 1

210

5438
5439
5438

543E
543F
5440
5443
5446
5449
544C
544F
5451
5453
5455
5458
545A
545C
545E
5460
5462
5464
5466
5469
5468
546D
546F
5472
5474
5477
5479
547C
547F
5481
5483
5486
5489
5488
548E
5491
5494
5495
5497
549A
5498
549D
549E
54A1
5444
54A5
54A7
54AA
54AD
5480
5483
5485
5488
54BA
548C
54BE
54C1
54C2
54(3
54C6

54(9 2

54CA
54CD

5F
1660
C3BBS6

ES

D5
21435A
CDIC55
212F58
CD9C55
CDDC5B
FE59
2829
FE4E
CA9ES3
FESO
2813
FE43
2806
FES52
2871
18£6
3A1256
FEQ6
200F
1817
3A1256
FEQ6
C4C654
3E06
321256
3A1256
FEOB
2848
CDC654
3AD355
CBF7
320355
11D255
CD3944

3EA8
32E746
Fl
2821

21435A
CDIC55

F6CO
CD0944
21€C57
€DIC55
CDDCSB
FE4E
CABE54
FE59
28CA
18F2
CbC654
D1

€35C52
2ADCS5

B
22DC55
c9

02870
02880
02890 MOD1

LD
LD
JP

utility

E,A ;LSB OF BUFFER NOW
D,60H ;MSB OF BUFFER
BLINK ;BLINK CURSOR

02900 ;*********************************i**********************

02910 ;*

WRITE A SECTOR ROUTINE

*

02920 ;**

02930 WRITE
02940
02950
02960
02970
02980
02990 WR3
03000
03010
03020
03030
03040
03050
03060
03070
03080
03090
03100
03110 WR6
03120
03130
03140
03150 WR5
03160
03170
03180
03190
03200 WR4
03210
03220
03230
03240 WRO
03250
03260
03270
03280
03290
03300
03310
03320
03330
03340
03350
03360
03370
03380
03390
03400
03410
03420 WR2
03430
03440
03450
03460
03470
03480 WR1
03490
03500
03510
03520 DECFCB
03530
03540
03550

PUSH
PUSH

HL

DE
HL,CLS
DPLAY
HL ,BESURE
DPLAY
KYBRD
59H
Z,WR4
4EH
Z,5K5

A, (PSAVE)
06H

NZ,4R4
WRO

A, (PSAVE)

06H

NZ,DECFCB

A,06H sREAD-PROTECT FLAG
(PSAVE), A

A, {PSAVE)

06H

Z,FIX

DECFCB

A, (AFCB+O1H)

06H, A

(AFCB+O1H) , A

DE, AFCB

4439H SWRITE A SECTOR
AF

A,0ABH sWRITE NON-READ PROT

{(46E7H) , A
AF

Z,4R1

AF
HL,CLS
DPLAY

AF

0COH
4409H
HL,RETRY
DPLAY
KYBRD
4EH
Z,WR1
59H
Z,4RD
WR2
DECFCB
DE

HL
REREAD
HL , (AFCB-+0AH)

HL
(AFCB+OAH), HL

03560 ;*******t****************t*******************************

Program continued

211

54CE
54D0
54D3

54D5
5408
54DB
54DE
54E0
54E3
54£4
54E6
54E8
54EB
54EF
54F2
54F5
54F8
54FA
54FD
54FE
5500
5503

5505
5508
5508
550E
5511
5514
5516
5519
551C
551F
5522
5523
5524
5527
5528
5528
552C
552F
5530
5531
5534
5535
5538
5539
553C
553E
5541

5544
5547
554A
554D
554F
5552
5555
5558
5558
555E

3tA9
326746
18B1

21BES8
CD9C55
21F255
0603
CD4000
7E
FEOD
28ED
CDSALE
ED53D(55
210958
€D9CS5s
21F255
0601
C04000
JE
D630
320855
1881

CD7155
€D2750
210358
CD9Chs
21F255
0608
€D4000
CD6350
115551
CDD150
E5

7D
CD8256
7C
CD3300

CD3300
3E0A

CD3300
£37555

Cb7155
21F657
CD9C55
060C

21F255
(D4000
CD2750
215051
CD9B50
CD8256

utility

03570 ;* WRITE A SECTOR READ PROTECTED *
03580 ;**
03590 FIX LD A,0A9H SWRITE (READ-PROT) CMD
03600) (46ETH), A JINSERT INTO DOS

03610 JR WRO

03620 ;**********************************k*********************
03630 3* RELOCATE SECTOR ROUTINE *
03640 ;**********************ﬁ*********************************
03650 RLO LD HL,DSN

03660 CALL DPLAY

03670 (D HL, INBUF

03680) B,3

03690 CALL 40H

03700 (b A, (HL)

03710 cp ODH

03720 JR Z,RL0

03730 CALL 1E5AH

03740 Lo (AFCB+OAH) ,DE

03750 (D HL, DN

03760 CALL DPLAY

03770) HL, INBUF

03780 (o 8,1

03790 CALL 40H

03800 (o A, (HL)

03810 SUB 30H

03820 i (AFCB+06H), A

03830 JR RO

03840 ;**
03850 * DISPLAY PASSWORD HASHCODE *
03860 ;**
03870 BPH CALL SYS2

03880 CALL 5027H JFILL NAME AREA W/ " "'S
03890 (o HL, PSHORD

03900 CALL DPLAY

03910 LD HL, INBUF

03920) B, 08H ;NO MORE THAN 8 LONG
03930 CALL 40H

03940 CALL 5063H JCALL SYS2 HASH ROUTINE
03950) DE,5155H

03960 CALL 50D1H

03970 PUSH HL sSAVE HASHCODE

03980 LD AL :GET LSB OF HASHCODE
03990 CALL HEXCV

04000 o AH JGET ASCII MSB OF HASH
04010 CALL 33 IDISPLAY MSB

04020 (p AL SGET ASCII LSB OF HASH
04030 CALL 33H

04040 POP HL

04050) AH SGET MSB OF HASHCODE
04060 CALL HEXCV

04070) AH ;GET MSB OF HASH

04080 CALL 33

04090) AL

04100 CALL 33H

04110) A,0AH

04120 CALL 334

04130 Jp SCFX

04140 ;*************************k******************************
04150 ;* DISPLAY FILES HASHCODE *

04160 ;**

04170 DFHC CALL SYS2

04180 LD HL,FILESP

04190 CALL DPLAY

04200 LD B,12

04210 LD HL, INBUF

04220 CALL 40H

04230 CALL 50274 ;CALL SYS2/SYS
04240 LD HL,515DH ;POINT TO FILESPEC
04250 CALL 5098H

04260 CALL HEXCV

212

5561 7C
5562 €D3300
5565 7D
5566 £D3300
5569 3EQA
5568 €D3300
556E £37555
5571 3ED4
5573 EF
5574 C9
5575 21DCS7
5578 CDIC55
5578 CDDC5B
557E FES58
5580 CA0G052
5583 FEQOD
5585 20F4
5587 213F5A
558A CD9IC55
558D 3E1B
558F CD3300
5592 3A1956
5595 FE33
5597 CA0555
559A 18A8

559C 7E
559D FEO3
559F (8
55A0 CD3A03
55A3 23
55A4 18F6

55A6 21B255
55A9 11D255
55AC 012000
5SAF EDBO
56B1 C9

55B2 80
5583 20
55B4 00
5585 00
5586 60
5587 00
5588 00
5589 00
55BA 00
55BB 00
55BC 00
558D 00
55BE FF
55BF FF
55C0 00
55C1 IF
55C2 20
55C3 00
55C4 10
55C5 1F
55C6 40
55C7 00
55(C8 20
65C9 1IF
55CA 60

04270
04280
04290
04300
04310
04320
04330
04340 sys2
04350
04360
04370 SCFX
04380
04390 SCFX1
04400
04410
04420
04430
04440
04450
04460
04470
04480
04490
04500
04510

utility

AH
334
A,L
334
A,0AH
334
SCFX
A,0D4H
28H

HL ,CONT
DPLAY
KYBRD
58H
Z7,START
0DH
NZ,SCFX1
HL,CLMESS
DPLAY
A,1BH
334

A, {MSAVE)
330

Z,0PH
DFHC

;LOADER CODE
;LOAD SYS2/SYS

3BACK TO CALLING ROUTINE

;CONTINUE MESSAGE

SGET A KEY
IS IT "

;BACK TO MENU
IS IT “ENTER®

3GET A KEY IF NOT

sWHICH MODE 277
3IS IT FILE HASH

JIF SO GO...

;GO TO PSWRD HASH

04520 ;**

04530 ;***

s
04540 shkkRkkhA A kA Rk kA kk

04550 DPLAY

04560
04570
04580
04590
04600

04620 ;***

LD
cp
RET
CALL
INC
JR

MOVE “"FCB" ROUTINE AND SAVE ORIGINAL “FCB"

A, (HL)
03H

Z
33AH
HL
DPLAY

DISPLAY ROUTINE

LR 22 L e Rt SRR S S T Y T I T

*kk

;GET CHAR. TO DISPLAY
;IS IT THE DELIMITER ?

sRETURN IF S0...

;CALL ROM DISPLAY ROUTINE
;BUMP MESSAGE POINTER
;LOOP TILL DELIMITER

04610 ;****t***

Ex 2

04630 Rl R S R s s e s et a2 T T T Ty e e e T e

04640 MFCB
04650
04660
04670
04680

LD
LD
LD
LDIR
RET

HL,FCB
DE,AFCB
BC,32

sPOINT 70 “"FCB"

;ACTUAL LOCATION OF “FCB"
;ALL 32 BYTES OF IT...

SMOVE IT 111

sRETURN TO CALLER...

04690 ;********************k***********************************

*kk

04710 ;**

04700 ;*** “F C B"
04720 FCB DEFB 80H
04730 DEFB 20H
04740 DEFB 00H
04750 DEFB 00H
04760 DEFB 60H
04770 DEFB 0CH
04780 DEFB 00H
04750 DEFB 00K
04800 DEFB 00H
04810 DEFB 00H
04820 DEF8B 00H
04830 DEFB O0H
04840 DEFB OFFH
04850 DEFB OFFH
04860 DEFB 0CH
04870 DEFB 1FH
04880 DEFB 20H
04890 DEFB QCH
04900 DEFB 10H
04910 DEFB 1FH
04920 DEFB 40H
04930 DEFB 00H
04940 DEFB 20H
04950 DEFB 1FH
04960 DEFB 60H

Program continued

213

utility

55(B 00 04970 DEFB 00H
55(C 30 04980 DEFB 30H
55D 1F 04990 DEFB 1FH
55(E 80 05000 DEFB 80H
S55(F 00 05010 DEFB 00H
5500 40 05020 DEFB 40H
551 1F 05030 DEFB 1FH
000 05040 AFCB DEFS 32 ;RESERVED FOR ACTUAL FCB
0G0 05050 INBUF DEFS 32 ;INPUT BUFFER LOCATION
5612 00 05060 PSAVE DEFB OOH ;READ PROTECT STATUS
5613 00 05070 DSAVE DEFB 00H ;ASCIT DRIVE NUMBER
5614 00 05080 ESAVE DEFB 00H ;RB OF SECTOR BUFFER
5615 0000 05090 NSAVE DEFW 00H
5617 0000 05100 RBSAVE DEFW 00H
5619 00 05110 MSAVE DEFB 00H
05120 ;******-k************'k**********'k'k************************
% a*
ggiig ;*************igiEE&*E}(EE&QI*?{?’EIifE********************k
561A CDC901 05150 SCREEN CALL 01C9H ;CLS
5610 21073C 05160 LD HL,3C07H ;DISPLAY LOCATION
5620 110060 05170 LD DE,6000H ;BUFFER LOCATION
5623 011010 05180 LD BC,1010H
5626 D5 05190 sCO PUSH DE
5627 C5 05200 PUSH BC
5628 1A 05210 S1 LD A, (DE) ;READ A BYTE
5629 C5 05220 PUSH BC ;SAVE COUNTER
562A D5 05230 PUSH DE ;SAVE BUFFSR gOI?TER
5628 E5 05240 PUSH HL ;SAVE VIDEO POINTER
562C CDB256 05250 CALL HEXCV ;CONVERT BUFFER TO ASCII
562F 54 05260 LD D,H ;HIGH ASCIT BYTE TO "D*
5630 5D 05270 LD E,L ;LOW ASCII BYTE TO "E"
5631 El 05280 POP P(iL) ;RESTORE VIDEO POINTER
5632 72 05290 LD HL),D
5633 23 05300 INC HL
5634 73 05310 LD (HL),E
5635 D1 05320 popP DE ;RESTORE BUFFER POINTER
5636 C1 05330 POP BC ;RESTORE COUNTER
5637 23 05340 INC HL ;BUMP VIDEO
5638 13 05350 INC DE ;BUMP BUFFER
5639 78 05360 LD A,B ;GET COUNTER
563A CB2F 05370 SRA A ;BUMP VIDEO 2 TIMES
563C 3001 05380 JR NC,SO ;FOR EVERY 4 DECS OF "B"
563 23 05390 INC HL
563F 10E7 05400 SO DJINZ S1
5641 C1 05410 POP BC ;RESTORE COUNTER
5642 D1 05420 POP DE ;RESTORE BUFFER POINTER
5643 1A 05430 SC1 LD A, (DE) ;READ A BYTE
5644 FE21 05440 cp 21H ;FIND BYTE RANGE
5646 3804 05450 JR C,00T ;JUMP IF NON-DISPLAYABLE
5648 FECO 05460 cP 0COH ;CHECK HIGH-RANGE
564A 3802 05470 JR c,s2 sJUMP TF WITHIN RANGE
564C 3E2E 05480 DOT LD A, 2EH ;CHANGE TO "."
564E 77 05490 S2 LD (HL),A ;BYTE TO SCREEN
564F 23 05500 INC HL ;BUMP VIDEO
5650 1C 05510 INC E ;BUMP BUFFER
5651 280F 05520 JR 7,D0 ;JUMP IF BUFFER EMPTY
5653 10EE 05530 DJINZ SC1 ;LOOP THRU LINE
5655 7D 05540 LD A,L ;GET LSB OF VIDEO
5656 E6CO 05550 AND OCOH
5658 (647 05560 ADD A,47H ;BUMP TO NEXT LINE
565A 6F 05570 LD L,A
5658 3001 05580 JR NC,S5
5650 24 05590 INC H
565E 0610 05600 S5 LD B,10H
5660 18C4 05610 JR SCo ;LOOP TILL DONE
5662 11043C 05620 DO LD DE,3C04H ;NUMBERED COLUMN START
5665 3E00 05630 LD A,00H JFIRST NUMBER
5667 F5 05640 SK6 PUSH AF ;SAVE NUMBER
5668 CDB256 05650 CALL HEXCV ;CONVERT T0 ASCII
5668 EB 05660 EX DE,HL

566C 72 05670 Lb (HL),D ;MSB OF ASCII BYTE

566D 23 05680 INC HL ;BUMP VIDEOQ

566E 73 05690 LD (HL),E ;LSB OF ASCII BYTE

566F 23 05700 INC HL

5670 36AA 05710 LD (HL), 0AAH sVERT. LINE DOWN SCREEN

5672 £B 05720 EX DE,H

5673 78 05730 LD AE ;LSB OF VIDEQ

5674 E6CO 05740 AND 0COH +BACK TO START OF LINE

5676 (644 05750 ADD A,44H ;BUMP ONE LINE DOMWN

5678 3001 05760 JR NC, SK7 sIF NO OVERFLOW JuMp

567A 14 05770 INC D ;BUMP MSB OF VIDEQ

567B 5F 05780 SK7 LD E,A 3BACK TO DE

567C F1 05790 POpP AF sRESTORE NUMBER

567D €610 05800 ADD A,10H sNEXT NUMBER

567F D8 05810 RET C sRETURN TF OVERFLOMW...

5680 18E5 05820 JR SK6
05830 ;****************************‘k***************************
05840 ;* BINARY TO ASCII CONV ROUTINE *
05850 **‘k***********‘k***

5682 4F 05860 HEXCV LD C,A sSAVE 2 HEX DIGITS

5683 CB3F 05870 SRL A ;ALIGN HIGH DIGIT

5685 CB3F 05880 SRL A

5687 CB3F 05890 SRL A

5689 CB3F 05900 SRL A

5688 CD9756 05910 CALL TEST ;CONVERT T0 ASCII

568E 67 05920 LD H,A 3 SAVE HIGH

568F 79 05930 LD A,C sRESTORE ORIGINAL

5690 E60F 05940 AND OFH ;ALIGN LOW DIGIT

5692 CD9756 05950 CALL TEST ;CONVERT TO ASCII

5695 6F 05960 LD L,A s SAVE LOW

5696 C9 05970 RET

5697 €630 05980 TEST ADD A,30H 3ADD ASCII BIAS

5699 FE3A 05990 cp 3AH sTEST FOR 0-9

5698 3802 06000 JR C,TEST1 ;0F IF 0-9

5690 C607 06010 ADD A7 ;ADJUST FOR A-F

569F €9 06020 TEST1 RET
06030 ;**wkikikix baladehbdd Fhk Ik ARk X biehbbdaiald FRkgAh A KKK ikaleha il
06040 ;> CONVERT BINARY TO 2 DECIMAL ASCII DIGITS *
06050 ;**

56A0 OE30 06060 BTOA LD C,30H JASCIT 0

56A2 D60A 06070 BTOAl SUB 0AH 3SUB 10 TILL CARRY

56A4 3803 06080 JR C,8T0AZ s IF CARRY THEN JuMp

56A6 0C 06090 INC c ;BUMP LOW ASCII DIGIT

56A7 18F9 06100 JR BT0AL ;L00P TILL CARRY

56A3 C63A 06110 BTOA2 ADD A,3AH sADJUST MSB

56A8 47 06120 LD B,A JHIGH ASCII DIGIT TO "8

56AC C9 06130 RET ;BC=2 ASCII NO.S
06140 ;**************t***
06150 ;* ASCIT TO HEX INPUT *
06160 ;****‘k***‘k***

56A0 D630 06170 ATOHEX SuB 30H 3REMOVE ASCII BIAS

56AF FEOA 06180 cp O0AH ;3 0-9 72

56B1 D8 06190 RET C ;RETURN IF 0-9

5682 D611 06200 SuB 11H 3 A-F?

56B4 FE06 06210 cp 06H sGREATER THAN F?

5686 DO 06220 RET NC

56B7 C60A 06230 ADD A,0AH

5689 37 06240 SCF

56BA C9 06250
06260 ;**t*
06270 ;* BLINKING CURSOR AND KEYBOARD SCAN ROUTINE *
06280 j*rdrkhikix flalabeleboilabiahabibabebiob b bbb bbb eabaleh bbb bbb

5688 7B 06290 BLINK LD AE

56BC CD8256 06300 CALL HEXCV

568F D5 06310 PUSH DE

56C0 EB 06320 EX DE,HL

56C1 21003F 06330 LD HL,3FOCH

56C4 72 06340 LD (HL),D

56C5 23 06350 INC HL

56C6 73 06360 LD (HL),E Program continued

utility

56C7 D1 06370 POP DE

56(8 21073C 06380 LD HL,3CO7H

56CB 7B 06390 LD AE

56CC CB3F 06400 SRL A

56CE (B3F 06410 SRL A

5600 CB3F 06420 SRL A

56D2 CB3F 06430 SRL A

56D4 47 06440 LD B,A

56D5 04 06450 INC B

5606 7D 06460 LD A,L

5607 1003 06470 BL2 DJNZ BL3

56D9 6F 06480 LD L,A

56DA 1807 06490 JR BL4

56DC €640 06500 BL3 ADD A,40H

56DE 30F7 06510 JR NC,BL2

56E0 24 06520 INC H

56E1 18F4 06530 JR BL2

56E3 7B 06540 BL4 LD A,E

56E4 E60F 06550 AND OFH ;SAVE BITS 0-3

56E6 2808 06560 JR Z,SRAl ;1F LOW BYTE=0 JUMP

56E£8 47 06570 LD B,A ;70 "B" FOR DJNZ

56E9 78 06580 BL5 LD A,B 3GET COUNTER

56EA CB2F 06590 SRA A 3INC L IF NO CARRY

56EC 3801 06600 JR C,SRAO

56EE 2C 06610 INC L ;ADJUST FOR SPACE

56EF 2C 06620 SRAO INC L

56F0 2C 06630 INC L

56F1 10F6 06640 DJNZ BLS 3IF B=0 THEN HL= CORRECT
06650 sLINE AND COLUMN OF
06660 ;SELECTED BYTE...

56F3 CDFB56 06670 SRAl CALL BL6

56F6 1828 06680 JR BL8

56F8 D5 06690 BL6 PUSH DE ;SAVE BUFFER POINTER

56F9 E5 06700 PUSH HL ;SAVE CURSOR POSITION

56FA 4E 06710 LD C,(HL) ;SAVE DISPLAY BYTE

56F8 0600 06720 TWOBEE LD B,0 ;256 LOOPS

56FD CD2B00 06730 CALL 2BH ;SCAN KEYBOARD

5700 87 06740 OR A 3SET FLAG IF KEY PRESSED

5701 200D 06750 JR NZ,BL7 ;JUMP IF KEY PRESSED

5703 10F8 06760 DJNZ TWOBEE+2

5705 CB7E 06770 BIT 7,(HL) ;IS CURSOR PRESENT 2

5707 2004 06780 JR NZ,CURSOR ;JUMP IF NOT

5709 368F 06790 LD (HL),8FH ;DISPLAY CURSOR

5708 18EE 06800 JR THOBEE

5700 71 06810 CURSOR LD (HL),C ;DISPLAY BYTE

570t 18EB 06820 JR TWOBEE

5710 E1 06830 8L7 POP HL

5711 D1 06840 POP DE

5712 368F 06850 LD (HL),8FH ;DISPLAY CURSOR

5714 C5 06860 PUSH BC JSAVE BYTE AT CURSOR POS.

5715 F5 06870 PUSH AF ;SAVE INPUT KEY

5716 010010 06880 LD 8C,1000H

5719 CD6000 06890 CALL 60H JHASTE TIME

5710 F1 06900 POP AF

5710 C1 06910 POP BC

571 71 06920 LD (HL),C ;0RIG. BYTE BACK TO VIDEO

571F C9 06930 RET

5720 FEO9 06940 BL8 cP 03H ;IS 1T RIGHT ARROW

5722 2829 06950 JR Z,RIGHT

5724 FEOB 06960 cp 08H ;1S IT LEFT ARROW ?

5726 2829 06970 JR 7,LEFT

5728 FE5B 06980 cP 5BH ;IS IT UP ARROW ?

572k 2829 06990 JR Z,UpP

5720 FEOA 07000 cp OAH ;IS 1T DOWN ARROW ?

572t 282C 07010 JR Z,D0UN

5730 FE51 07020 cp 51H ;IS IT Q"

5731 282F 07030 JR Z,QuIT

5734 FE58 07040 cP 58H 31S IT X

5736 283C 07050 JR Z,EX

5738 FE53 07060 cp 53H ;1S 1T "s"

216

573A
573D
573F
5742
5743
5746
5748
5748
574D
574€
5751
5752
5755
5756
5758
5759
575C
575D
575F
5760
5763
5766
5768
576A
576D
576E
5771
5774
5771
5778
5779
577A
5778
577C
577F
5780
5783
5784
5786
5787
5788
5789
578A
5788
578C
578D
578E
578F
5790
5791
5792
5793
5796
5797
5799
5798
579D
579F
57A0
57A2
57A5
57A6
57A7
57A9
57AA
57AB
57AC
57AE
5780
5781

CA595A
FEGD
CA3ES4
47
CDADS6
382F
CDF856
1803
1C
€38B56

C3BB56
3A1256
FEO6
2807
2ADCS5
28
22DC55
C35C52
€30052
F5

78

77

23

D5
CDF856
47
CDAD56
4F
30F6
D1

7B
E60F
C62F
85
6F

07070
07080
07090
07100
07110
07120
07130
07140
07150
07160
07170
07180
07190
07200
07210
07220
07230
07240
07250
07260
07270
07280
07290
07300
07310
07320
07330
07340
07350
07360
07370
07380
07390
07400
07410
07420
07430
07440
07450
07460
07470
07480
07490
07500
07510
07520
07530
07540
07550
07560
07570
07580
07590
07600
07610
07620
07630
07640
07650
07660
07670
07680
07690
07700
07710
07720
07730
07740
07750
07760

RIGHT
LEFT

DOWN

QUIT

Q1
VALID

SECOND

CoMPO

COMP1

7,01
HL, (AFCB+0AH)
HL
(AFCB+0AH) , HL
REREAD

START

;GO TO SEARCH ROUTINE

3SAVE INPUT KEY

;BUMP BUFFER NUMBER

;DEC BUFFER NUMBER

;GET BUFFER NUMBER

3 SUBTRACT 16

s

;GET BUFFER NUMBER
;ADD 16

;DIRECTORY SECTOR ?

JIF SO JuMp
SGET NEXT

;BACK TO ORIGINAL SECTOR

;BACK TO “"FCB"

;REREAD ORIGINAL SECTOR

sGET INPUT KEY

Program continued

217

5782 1A 07770 LD A, (DE)

57B3 FE21 07780 cp 21H sASCIT LOW DISPLAY RANGE

5785 3804 07790 JR ¢,CoMP3

5787 FECO 07800 cp 0COH ;ASCIT HIGH DISPLAY RANGE

5789 3802 07810 JR C,CoMP2

57BB 3E2E 07820 COMP3 LD A,2EH ;DISPLAY “."/0UT OF RANGE

578D 77 07830 COMP2 LD (HL),A

57BE E1 07840 POP HL

578F 1C 07850 INC £

57C0 C3BB56 07860 JP BLINK
07870 ;*****‘k***********'k*****'k********************************
07880 ;* DISPLAY 3 BYTE MESSAGES *
07890 ;****‘k***

57C3 0603 07900 THREE LD 8,03H ;3 CHARACTERS LONG

57C5 7E 07910 TO LD A, (HL) ;GET MESSAGE BYTE

57C6 12 07920 LD (DE),A ;70 VIDED

57C7 13 07930 INC DE ;BUMP VIDEQ

57C8 23 07940 INC HL ;BUMP MESSAGE POINTER

57C9 10FA 07950 DINZ T0

57CB €9 07960
07970 ;**
07980 ;* MESSAGES *
07990 ;***1\‘******

57CC 43 08000 RETRY DEFM 'CARE TO RETRY ?'

57DB 03 08010 DEFB 03H

57DC 50 08020 CONT DEFM 'PRESS “ENTER" TO CONTINUE'

57F5 03 08030 DEFB 03H

57F6 OA 08040 FILESP DEFB OAH

57F7 46 08050 DEFM 'FILESPEC 7 '

5802 03 08060 DEFB 03H

5803 OA 08070 PSWORD DEFB 0AH

5804 50 08080 DEFM 'PASSWORD ? '

580F 03 08090 DEFB 3H

5810 52 08100 RIF DEFM 'RELATIVE SECTOR WITHIN FILE 7 '

582E 03 08110 DEFB 03H

582F 52 08120 BESURE DEFM 'REPLY "Y" TO WRITE SECTOR

5848 0A 08130 DEFB 0AH

5849 C6 08140 DEFB 0C6H

584A 22 08150 DEFM ‘P TO WRITE SECTOR READ PROTECTED

586C DA 08160 DEFB 0AH

586D C6 08170 DEFB 0C6H

586E 22 08180 DEFM *C" TO WRITE SECTOR NON-READ PROTECTED

5894 0A 08190 DEFB 0AH

5895 C6 08200 DEFB 0C6H

5896 22 08210 DEFM '"R" TO RELOCATE SECTOR

58AC DA 08220 DEFB OAH

58AD C6 08230 DEFB 0C6H

B8AE 22 08240 DEFM '“N" TO ABORT...

588D 03 08250 DEFB 03H

58BE OA 08260 DSN DEFB OAH

58BF 52 08270 DEFM 'RELATIVE SECTOR NUMBER ? '

5808 03 08280 DEFB 03H

5809 44 08290 DN DEFM ‘DRIVE NUMBER 7 '

58£8 03 08300 DEFB 03H

58E9 1CIF 08310 MENU DEFH 1F1CH ;CONT.CODES (HOME, EREOF)

58EB 2A 08320 DEFM e e e T T S E T m e =

5928 2A 08330 DEFM e DANDYZAP

5968 2A 08340 DEFM B B ettt bt ettt bbbttt

59A8 OAQA 08350 DEFW OAQAH ;2 LINE FEEDS

59AD 31 08360 DEFM 'l - “DISPLAY DISK SECTOR"'

59C6 DA 08370 DEFB 0AH ;LINE FEED

59C7 32 08380 DEFM ‘2 - "DISPLAY FILES SECTOR"'

59E1 OA 08390 DEFB OAH

59E2 33 08400 DEFM '3 - "DISPLAY PASSWORD ENCODE"'

59FF OA 08410 DEFB OAH

5A00 34 08420 DEFM '4 - "DISPLAY FILES HASHCODE"'

5A1C OA 08430 DEFB 0AH

5A1D 35 08440 DEFM *5 - “RETURN TO TRSDOS"

5A33 OACA 08450 DEFW 0AQAH

5A35 43 08460 DEFM 'CHOICE 2’

218

5A3E
5A3F
5A41
5A43
5A45
5A47
5A49
5A4A
5A4D
5A50
5A53
5A56

5A59
5A58

SASE
5A61
5A63
5A66
5A68
5A68
SAGE
5A70
5A73
5A76
5A78
SA7B
SA7D
5A80
5A82
5A83
5A86
5A89
5A88
5A8C
5A8D

03
1B18
1F03
1CIF
0AOA
0AOA
03
44
54
53
46
52

3ES3
€D8CsB

CDA658
3E8F
CDA658
0604
CD8658
CA7058
FES8
CA6357
117858
1805

5A90 12

5A91
5A92
5A94
5A97

5A99
5A98
SA9C
5A9F
5AAL
5AA4
5AA6
SAA7
5AA9

S5AAC
SAAE
5AB1
5AB3
5AB4
5ABS
5AB6
5A89
5ABB
5ABE
5AC0O
SACI
5AC3
5ACS
5AC8

CD8CS8

3E20
CDAG658
10F9
C1

C9

AF
327F58
189E
3A1956
D630
3D
2802
1805
CDA452
1803

08470
08480
08490
08500
08510
08520
08530
08540
08550
08560
08570
08580
08590
08600
08610
08620
08630
08640
08650
08660
08670
08680
08690
08700
08710
08720
08730
08740
08750
08760
08770
08780
08790
08800
08810
08820
08830
08840
08850
08860
08870
08880
08890
08900
08910
08920
08930
08940
08950
08960
08970
08980
08990
09000
09010
09020
08030
09040
09050
09060
09070
09080
09090
09100
09110
09120
09130
09140
09150
09160

CLMESS
CLS

DRV
TRK
SEC
FRS
REL

DEFB
DEFW
DEFW
DEFW
DEFW
DEFW
DEFB
DEFM
DEFM
DEFM
DEFM
DEFM

utility

03H

1B1BH
031FH
1F1CH
OAOAH
OAOAH
03H

‘DRV!
'TRK!
'SEC!
'FRS'
'REL'

;DELIMITER
;THO UPWARD LINE FEEDS
;EREQF AND DELIMITER

;***********i’i’*********************‘k*********************

3* SEARCH MODE FUNCTION / WRITTEN 8Y, JACK WESNIDGE *

sRAREARRN IR Rk kR hkkdhkhkAhhkkhdkdkhkrdkhdddohhhddihhkkdinkktr

SMODE

L3
L8

L2

BAD
BAD1

L6

B1

SEARCH

M1

LD
CALL

CALL

A,53H
SET

SD
A,08FH

(LEN),A
SMODE

A, (MSAVE)
30H

A
7,M1
M2
$K1
M3

; lISI!

sTHIS SETS 4020H @ TOP OF
;SCREEN FOR SIDE DISPLAY
;DISPLAY “F"

;DISPLAY GRAPHIC 8LOCK

34 BYTES MAX.

;WAS ENTER KEY PRESSED ?
;RETAIN STRING CONT. FIND
3 X" KEY HIT ?

3IF SO EXIT "S" MODE
3STRING LOCATION

ENTER KEY 1S PRESSED
;REMOVE ASCII BIAS
;IF BAD INPUT

;SAVE FIRST KEY INPUT
;SCAN KB

sREMOVE ASCII BIAS
sIF BAD INPUT

;SECOND KEY INPUT

3CONVERT ASCIT TO HEX
3STORE 17

3GRAPHIC BLOCK

sDISPLAY IT

;REPEAT TIL DONE OR ENTER
;KEY IS PRESSED

sMAX. LEN OF STRING

;LEFT OVER FROM DINZ
3STORE LENGTH OF STRING

;15 LINES ON VIDEQ

JSETS 4020H @ TOP OF
;SCREEN FOR SIDE DISPLAY
+SPACE

;DISPLAY @ SIDE OF SCREEN
;CLEAR SIDE DISPLAY

;ZERO LEN. BAD INPUT
;TRY AGAIN...

;GET MODE KEY

3SUB ASCII BIAS

3IF MODE 1 THEN JUMP
3JUMP TO MODE 2
;DISPLAY BUFFER ON SCREEN
Program continued

219

SACA CD2F53 09170 M2 (ALL SK2 ;DISPLAY FILE BUFFER

5ACD 2E00 09180 M3 LD L,00H SECTOR BUFFER

SACF 2660 09190 NO LD H,604 sMSB OF READ BUFFER

5AD1 117858 09200 Lo DE, FBUF STRING BUFFER

5AD4 1A 09210 AGN LD A, (DE) GET CHAR. FROM BUFFER

5AD5 BE 09220 cp (HL) :CP WITH SECTOR BUFFER

5AD6 2855 09230 JR Z,FOUND

5AD8 2C 09240 INC L sPOINT TO NEXT CHAR.

5AD9 209 09250 JR NZ,AGN NG THEN REPEAT

5ADB CDEOSA 09260 (ALL SREAD SECTOR READ IF BUF EMPTY

SADE 180B 09270 JR SEARCH

5AEQ D5 09280 SREAD PUSH DE

5AE1 E5 09290 PUSH HL

SAE2 3A1256 09300 LD A, (PSAVE) 3GET PROT-STATUS

5AE5 FEO6 09310 cp o6H sREAD-PROTECTED 777

SAE7 2009 09320 JR NZ,0K JIF NOT THEN JuMp

5AE9 EDSBDCS5 09330 LD DE,(AFCB+0AH) ;CURRENT SECTOR

SAED 13 09340 INC DE THIS INCREMENTS THE NEXT

SAEE ED53DC55 09350 LD (AFCB+0AH),DE ;STORE BACK AS NEW NEXT

5AFZ 110255 09360 OK LD DE,AFCB

5AF5 CD3644 09370 CALL 4436H sREAD A SECTOR

5AF8 F5 09380 PUSH AF

S5AF9 CD2B00 09390 CALL 2BH +SCAN KEYBOARD

5AFC B7 09400 0R A iSET FLAG IF KEY PUSHED

SAFD C26357 09410 P NZ,QUIT STOP AND DISPLAY SECTOR

5800 F1 09420 POP AF

5801 321256 09430 LD (PSAVE) A SAVE PROTECTION-STATUS

5804 E1 09440 pOP HL

5805 D1 09450 POP DE

5806 C8 09460 RET z sRETURN IF NO ERROR

5BO7 FEO6 09470 P 06

5809 C8 09480 RET z sRETURN IF ERRORCODE 6

SBOA FELC 09490 cP 1CH END OF FILE ENCOUNTERED?

5BOC F5 09500 PUSH AF

580D 214354 09510 LD HL,CLS

5810 CDIC55 09520 CALL DPLAY

5B13 F1 09530 POP AF

5814 F5 09540 PUSH AF

5815 CC2658 09550 CALL Z,DONE1

5818 FE1D 09560 P 1DH

5B1A CC265B 09570 CALL Z,DONE1

5B1D F1 09580 pPOP AF

5B1E F6CO 09590 0R OCOH

5B20 CD0944 09600 CALL 4409H ;DISPLAY ERROR

5823 (3C158 09610 P RELO SEXIT SEARCH MODE

5826 219358 09620 DONE1 LD HL,MES1

5829 CDIC55 09630 CALL DPLAY

5B2C C9 09640 RET

582D 221756 09650 FOUND LD (RBSAVE) , HL JSAVE POSITION OF FIND

5B30 3A7FSB 09660 LD A, (LEN) :LENGTH OF STRING

5B33 FEOL 09670 cp 01H

5B35 282C 09680 JR Z,0k1 IF ONLY ONE BYTE JUMP

5837 47 09690 LD B,A sLENGTH OF STRING

5838 05 09700 DEC B ADJUST FOR FIND...

5B39 2C 09710 NEXT INC L sPOINT TO NXT BUFFER CHAR

5B3A 2000 09720 JR NZ,SKIP2

5B3C E5 09730 PUSH HL

5B3D 2ADC55 09740 Lo HL, (AFCB+OAH) ;GET NEXT VALUE

5B40 28 09750 DEC HL

5B41 221556 09760 LD (NSAVE) , KL

5844 E1 09770 POP HL

5B45 CCEOSA 09780 CALL Z,SREAD JSECTOR READ IF BUF EMPTY

5848 13 09790 SKIPZ INC DE BUMP TO NEXT STRING CHAR

5843 1A 09800) A, {DE)

5B4A BE 09810 P (HL)

5B4B 2082 09820 IR NZ,NO ;CONT SEARCH WHERE WE
09830 SLEFT OFF...

5B4D 10EA 09840 DINZ NEXT CHECK REST OF STRING

5B4F 7D 09850 SHOW LD AL SGET LSB OF BUFFER

5850 B7 09860 0R A LSET FLAGS

220

2010
2A1556
ED5BDCSS5
DF

2806
22DC55
CDEOSA
2A1756

1660
C3BBS56
3A1456
3C

6F
CCEO5A
C3CF5A

0000
0000

CDA358B
FEOD
c9
21033C
222040
C9
1F1C
OAQA
0A

CDDC58
E5
2A2040
FEOD
F5
CCA65A
F1
FEOD
2801
77

c9
3A1956
D630
3D
2803
C37F53
210C57
CD9C55
CDDCsB
FEQD
20F9
€30052
D5
€D4900

09870
09880
09890
09900
09910
09920
09930
09940
09950
09960
09970
09980
09990
10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10390
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
10500
10510
10520
10530
10540
10550
10560

OK1

L7

FBUF

LEN
AHEX

L1

SET

MES1

KSD
SD

SKIP1

RELO

MODE1

KYBRD

utility

NZ,0K1

HL, (NSAVE)

DE, (AFCB+0AH)

18H

7,0kl

(AFCB+OAH) , HL

SREAD

HL, (RBSAVE)

E,A

(ESAVE), A
,60H

BLINK

A, (ESAVE)

A

L,A
Z,SREAD
NO

HL,3CO3H
(4020H) , HL

1C1FH
0AOAH

OAH

'NO MATCH'
0AOAH

03H

KYBRD

HL

HL , (4020H)
ODH

AF
Z,BAD1
AF

0DH
Z,5KIP1
(HL),A
BC

BC,40H
HL,BC

BC
(4020H) , HL
HL

A, (MSAVE)
300

A
Z,MODEL
SKIPS
HL, CONT
DPLAY
KYBRD
ODH
NZ,K1
START
DE

49H

3GET SAVE NEXT VALUE
3GET CURRENT NEXT VALUE
;COMPARE TO EACH OTHER

3JUMP IF SAME
3ADUSTED NEXT BACK
;READ IN SECTOR
3GET RB OF FIND

T0 FCB

3SAVE POSITION IN BUFFER
;MS8 OF READ BUFFER

;GET LSB POSITION OF BUF
;BUMP TO NEXT POSITION

;SECTOR READ IF BUF EMPTY
;CONTINUE SEARCH OF OLD

3STRING. ..

3 SCAN KYBRD / DISP

;THIS SETS SIDE DI
;TO TOP OF SCREEN

3GET CURSOR POSITI
;IS IT "ENTER"

;DISPLAY BYTE IN A
;ONE LINE DOWN

3SAVE NEW CURSOR P

;WHICH MODE ARE WE
;SUB ASCII BIAS

;DISPLAY "CONTINUE
3 SCAN KEYBOARD
;ENTER KEY 772
;RESCAN IF NOT...
sBACK TO MAIN MENU

LAY KEY

SPLAY

ON

OSITION

IN 777

" MESS

Program continued

221

utility

5BEC D1 10570 PoP DE
5BE1 C9 10580 RET
5200 10590 END START

00000 TOTAL ERRORS

222

UTILITY

Slow Scroll

by Peter A. Lewis

Having converted from Level I to Level II, I am extremely pleased with
all the new features of the more advanced language. One wrinkle that
I don’t appreciate, however, is the way the program flies by on the screen
when you list it. In this regard, Level I has a superior system by stopping the
list when the screen is almost full and allowing you to hit the up arrow key to
move the display up the screen.

I know you can press SHIFT@ to freeze the display, but I am invariably
fumble-fingered and find that the part of the program that I wanted to see
has somehow whisked by before I could stop it. Another thing that bothers
me about automatic scrolling is that whenever I write a program that dis-
plays more than one screen full of data, I need a PRESS ENTER TO CON-
TINUE routine to stop the display.

There are three things I don’t like about that procedure. First, you have to
keep track of the lines that your program is displaying so you know where to
insert the pauses. Second, you cannot use the bottom line of the screen because
it is needed for the PRESS ENTER. . . message. Third, if the user has the op-
tion to output to the printer, your program has to bypass the pause messages.

A small modification to the Level II video driver solves all of the above.
With this modification installed, any line that ends with a new line character
(ASCII 13) that also causes the screen to scroll, now has the following effect:

® The display freezes after that line is printed.

® Pressing the up arrow allows normal printing to continue until the next
new line character (just like Level I LIST).

® Pressing CLEAR clears the screen and starts a new screen.

® Pressing BREAK stops the program or the list and the READY message
is displayed.

® Any other key is ignored.

The modification is not active when the cursor is turned on. This allows
the screen to scroll normally when you are inputting a long program. You
can also use this feature to temporarily turn off the modification within a
program. By executing a PRINT CHR$(14) the cursor is turned on and nor-
mal scrolling is in effect until you turn it off with a PRINT CHR$(15). The
cursor is automatically turned off after an INPUT statement or if the pro-
gram is restarted from READY.

223

utility

Three Methods

You can load the modification in three ways. With any method, the pro-
gram is completely relocatable. My version ends at the top of a 16K ma-
chine. You may want to load it at a different location to accommodate a
larger memory size or other machine-language routines.

If you have the Editor/Assembler, enter the source code shown in Pro-
gram Listing 1, assemble it, and create a SYSTEM tape. Then initialize the
system by entering SYSTEM followed by /0 and set memory size to 32678.
Load the SYSTEM tape and enter a / to execute it. Enter CLEAR, and
you're in business. If you want the program to be loaded at a different loca-
tion in memory, just change the ORG statement. Remember to set memory
size to one less than that address.

If you have T-BUG, you can enter the object code shown on the left side of
Program Listing 1 by using the M command. Then use the P command to
create a SYSTEM tape.

The third method of loading is shown in the BASIC program in Program
Listing 2. This routine allows you to specify the load address. (Entering 0
loads the program at the top of 16K.) Don’t forget to set MEMORY SIZE
first, as described above.

The modification can be turned on or off by executing a PRINT CHR$(1) _
or PRINT CHR$(0), respectively. Initially it is off.

224

TFAT
TFAT7
TFAA
TFAD
TFAE
TFB1

TFB4
TFB5
7FB8
TEBA
7FBB
TFBC
7FBD
7FBE
TFCD

7FC2
7FC3

TFC5
7FC6
7FC7

TFC9
7FCC
7FCD
TFCF
7FD@
7FD2
7FD4
7ED7
7FDA
7FDB
7FDC
TFDE

TFE@
7FE3
7FE5
TFE7
TFE9
7FEB
TFED

TFEF

7FF2
7FF3

CDOB@G
lipnae8
19

221E40
c3cces

F5
CDOBBO
lsgl

71
182p

7E
B7
282B

3A2249
B7
2825
79
FE@D
20280
272040
114000
19

7C
FEAD
2014

CDA4960
FE@]
2011
FE5B
2069
FE1F
20F1

CDC9B1

F1
c9

00100
00128
60140
g0l6@
#0180
2e200
80220
00240
00260
00280
00300
803208
60340
00360
00380
00400
00420
00440
60460
00480
00500
00520
00540
00560
60580
00600
00620
po64@
00660
20680
08700
00720
007408
Be760
008788
00808
00820
gue4ae
08860
60880
apseo
00920
20940
gg9e6d
00980
01669
01020
21040
01060
01080
g1108
01120
01148
01160
gll8e@
12009
91220
21249
01268
81280
2136¢
091320
61340
01360
01380
01400
081420

utility

Program Listing 1. Source code

; SCREEN CONTROL -11/85/79-~ PETER A. LEWIS
;SET UP DCB DRIVER ADDRESS

H

ORG 7FATH $32679 DEC.
INIT CALL P00BH s PUT LOCN IN HL
b DE,SCREEN=-$
ADD HL,DE
LD (401EH) ,HL ; ENTRY ADDR TO DCB
JP 66 CCH s RETURN TO READY

;CHECK FOR FLAG CHARACTER {88=0FF, 01=ON)

;
SCREEN PUSH AF ; SAVE FLAGS
CALL 800BH ;PUT LOCN IN HL
JR BYPFLG ;BYPASS FLAG
DEFB a ;ON/OFF FLAG
BYPFLG INC HL
INC HL :+HL POINTS TO FLAG
LD A,C ; CHARACTER TO A
AND @FEHR ;LOW BIT OFF
JR NZ ,NOFLAG ;NOT A FLAG

i
;SAVE NEW FLAG

;

LD (8L) ,C ; STORE NEW FLAG
JR BYPDRV ;BYPASS DRIVER

; TEST FLAG

&OFLAG LD A, (8L) ;FLAG TO A
OR A ;s TEST FOR ZERO
JR Z ,RSTRA s @-BYPASS ROUTINE

!
; TRAP NEW LINE CHARACTER
;

LD A, (40822H) ; CURSOR CHAR.,
OR A ;IS CURSOR ON?
JR NZ,RSTRA ; YES-GOTO DRIVER
LD A,C ; CHARACTER TO A
CP ¢DH s NEW LINE?
JR NZ,RSTRA s NO-TO DRIVER
LD HL, (4020H) ; CURSOR ADDR.
LD DE, 40H ;LINE SIZE
ADD HL,DE sADD 1 LINE
LD A,H ;NEW MSB
cp 40H : SCREN OVERFLOW?
JR NZ ,RSTRA 3 NO~-TO DRIVER
;WAIT FOR KEYBOARD ENTRY
i
KBDIN CALL 49H ;WAIT FOR KEYBD
cp 21 : BREAK?
JR NZ,READY ; YES—-SEND READY
cp 5BH ;UP ARROW
JR NZ ,RSTRA ; YES-TO DRIVER
Ccp 1FH ; CLEAR?
JR NZ,KBDIN ;NO-READ KEYBD AGAIN
PROCESS CLEAR KEY

e ne

CALL $1C9H ;CLS

{BYPASS DRIVER

;

BYPDRV POP AF ;RESTORE FLAGS
RET ;BYPASS DRIVER

Program continued

225

TFF4 Fl
TFF5 (35804

7FF8 3EPE
TFFA 322240
TFFD C3191A
TFAT

RGO TOTAL

BYPDRV 7FF2
BYPFLG 7FBB
INIT TFA7
KBDIN 7FEB
NOFLAG 7FC5
READY 7FF8
RSTRA 7FF4
SCREEN 7FB4

014406
81460
01480
01500
01528
01540
p1560
01580
61600
81620
81640
61660
ERRORS

81490
20440
08208
81120
60700
01600
01500
o360

utility

RETURN TO DRIVER

B3 ~e we e
w0
]
5

006280
00400
61660
Bl240
08528
011690
008740
80220

POP AF ;RESTORE FLAGS
Jp B458H ; TO DRIVER

RETURN TO READY

LD A,BEH ; TURN ON CURSOR
LD (4022H) ,A

Jp 1A19H ;TO READY MSG
END INIT

00860 00920 91040 01200

Program Listing 2. BASIC

108 REM ~SCREEN CONTROL-11/8/79-PETER A. LEWIS

12P DEFINT
1408 CLS :

B -2

INPUT "ENTER STARTING ADDRESS FOR LOAD";A

168 IF A =
THEN
A =3
178 IF A >
THEN
7 =
ELSE
72 =
180 FOR X
208 READ
220 POKE
248 NEXT
26@ PRINT
288 PRINT :

s¥XNO P P

[/

2679
32767

- 65536

g TO 88

+ X,D

.

TO ACTIVATE, ENTER:"

PRINT ,"SYSTEM":

PRINT ,
PRINT ,
PRINT

"/ A
"CLEAR":

388 PRINT "PRINT CHR$(1l) TO TURN ON, PRINT CHR$(8) TO TURN OFF"

328 PRINT
340 END

1680 DATA 265,11,0,17,106,8,25,34,30,64,195,25,26,245
1628 DATA 205,11,9,24,1,8,35,35,121,230,254,32,3,113
1640 DATA 24,45,126,183,40,43,58,34,64,183,32,37,121
1060 DATA 254,13,32,32,42,32,64,17,64,0,25,124,254,64
1080 DATA 32,20,205,73,0,254,1,40,17,254,91,40,9,254
1198 DATA 31,32,241,205,201,1,241,261,241,195,88,4,62
1128 DATA 14,56,34,64,195,25,26

226

APPENDIX

Appendix A
Appendix B

227

APPENDIX A

BASIC Program Listings

Debugging someone else’s mistakes is no fun. In a business environment,
where programs are continuously updated and programmers come and go,
well-commented and structured programs are a must. Indeed, it behooves
any serious programmer to learn structured technique.

The BASIC language has no inherent structure. Most interpreters allow
remark lines and some are capable of ignoring unnecessary spacing, but
BASIC is still more “Beginner’s Instruction Code” than “All-purpose . ”

The listings in this encyclopedia are an attempt at formatting the TRS-80
BASICs. We think it makes them easier to read, easier to trace, and less im-
posing when it comes time to type them into the computer. You should not,
however, type them in exactly as they appear. Follow normal syntax and en-
try procedures as described in your user’s manual.

Level I Programs

Programs originally in Level I have been converted to allow running in
Level I1. To run in Level I, follow this procedure:
@ Delete any dimension statements. Example: DIM A (25).
® Change PRINT@ to PRINTAT.
@ Make sure that no INPUT variable is a STRING variable.
Example: INPUT A$ would be changed to INPUT A and subsequent code
made to agree.
@ Abbreviate all BASIC statements as allowed by Level 1.
Example: PRINT is abbreviated P.

Model I1I Users

For the Model I, OUT255,0 and OUT255,4 turn the cassette motor off
and on, respectively. For the Model III, change these statements to
0UT236,0 and OUT236,2.

229

APPENDIX B

Glossary

A

access time—the elapsed time between a request for data and the appear-
ance of valid data on the output pins of a memory chip. Usually 200-450
nanoseconds for TRS-80 RAM.

accumulator—the main register(s) in a microprocessor used for arithmetic,
shifting, logical, and other operations.

accuracy— generally, the quality or freedom from mistake or error; the ex-
tent to which the results of a calculation or a measurement approach the
true value of the actual quantities,

acoustic coupler—a connection to a modem allowing signals to be transmit-
ted through a regular telephone handset.

A/D converter—analog to digital converter. See D/A converter.

address—a code that specifies a register, memory location, or other data
source or destination.

ALGOL—an acronym for ALGOrithmic Language. A very high-level
language used in scientific applications, generally on large-scale computers.

algorithm— a predetermined process for the solution of a problem or com-
pletion of a task in a finite number of steps.

alignment—the process of adjusting components of a system for proper
interrelationships, including adjustments and synchronization for the com-
ponents in a system. For the TRS-80, this usually applies to cassette heads
and disk drives.

alphanumerics—refer to the letters of the alphabet and digits of the number
system, specifically omitting the characters of punctuation and syntax.

alternating current— ac. Electric current that reverses direction periodical-
ly, usually many times per second.

230

appendix

ALU— Arithmetic Logic Unit.

analog—the representation of a physical variable by another variable in-
sofar as the proportional relationships are the same over some specified
range.

AND—a Boolean logic function. Two operators are tested and, if both are
true, the answer is true. Truth is indicated by a high bit, or 1 in machine
language, or a positive value in BASIC. If the operators are bytes or words,
each element is tested separately. A bit-by-bit logical operation which pro-
duces a one in the result bit only if both operand bits are ones.

anode—-in a semiconductor diode, the terminal toward which electrons flow
from an external circuit; the positive terminal.

APL—A Programming Language; a popular and powerful high-level
mathematical language with extensive symbol manipulation.

argument— any of the independent variables accompanying a command.

Arithmetic Logic Unit— ALU. The section of a microprocessor which per-
forms arithmetic functions such as addition or subtraction and logic func-
tions such as ANDing.

array— a collection of data items arranged in a meaningful pattern such as
rows and columns which allow the collection and retrieval of data.

ASCII— American Standard Code for Information Interchange. An almost
universally accepted code (at least for punctuation and capital letters) where
characters and printer commands are represented by numbers between 0
and 255 (base 10). The number is referred to as an ASCII code.

assembler—software that translates operational codes into their binary
equivalents on a statement-for-statement basis.

assembly language— a symbolic computer language that is translated by an

assembler program into machine language, the numeric codes that are
equivalent to microprocessor instructions.

B

backup—1) refers to making copies of all software and data stored external-
ly; 2) having duplicate hardware available.

231

appendix

base—the starting point for representation of a number in written form,
where numbers are expressed as multiples of powers of the base value.

BASIC—an acronym for Beginner’s All-purpose Symbolic Instruction Code.
Developed at Dartmouth College and similar to FORTRAN. The standard,
high-level, interactive language for microcomputers.

batch processing—-a method of computing in which many of the same types
of jobs or programs are done in one machine run. For example, a program-
ming class may type programs on data cards and turn them over to the com-
puter operator. All the cards are put into the card reader, and the results of
each person’s program are returned later. This is contrasted with interactive
computing.

baud—1) a unit of data transmission speed equal to the number of code
elements (bits) per second; 2) a unit of signaling speed equal to the number
of discrete conditions or signal events per second.

baud rate—a measure of the speed at which serial data is transmitted elec-
tronically. The equivalent of bits per second (bps) in microcomputing.

benchmark—to test performance against a known standard.

BCD— binary coded decimal. The 4-bit binary notation in which individual
decimal digits (O through 9) are represented by 4-bit binary numerals; e.g.,
the number 23 is represented by 0010 0011 in the BCD notation.

bias— a dc voltage applied to a transistor control electrode to establish the
desired operating point.

bidirectional bus—a bus structure used for the two-way transmission of
signals, that is, both input and output.

bidirectional printer—a printer capable of printing both left-to-right and
right-to-left. Data is prestored in a fixed-size buffer.

binary—a number system which uses only 0 and 1 as digits. It is the
equivalent of base 2. Used in microcomputing because it is easy to represent
1s and Os by high and low electrical signals.

binary digit—the two digits, 0 and 1, used in binary notation. Often
shortened to bit.

bi-stable— two-state

232

appendix

bit—-an abbreviation for binary digit. A 0 or 1 in the binary number system.
A single high or low signal in a computer.

bit position—the position of a binary digit within a byte or larger group of
binary digits. Bit positions in the Model I, II, 111, and Color Computer are
numbered from right to left, zero through N. This number corresponds to
the power of two represented.

Boolean algebra—a mathematical system of logic first identified by George
Boole, a 19th century English mathematician. Routines are described by
combinations of ANDs, ORs, XORs, NOTs, and IF-THENs. All comnputer
functions are based upon these operators.

boot-—short for bootstrap loader or the use of one. The bootstrap loader is a
very short routine whose purpose is to load a more sophisticated system into
the computer when it is first turned on. On some machines it is keyed in, and
on others it is in read only memory (ROM). Using this program is called
booting or cold-starting the system.

bps—bits per second.

buffer—memory set aside temporarily for use by the program. Particularly
refers to memory used to make up differences in the data transfer rates of the
computer and external devices such as printers and disks.

bug--an error in software or hardware.

bus—an ordered collection of all address, data, timing, and status lines in
the computer.

byte—eight bits that are read simultaneously as a single code.

C

CAI—an acronym for Computer Aided Instruction.

card~~a specially designed sheet of cardboard with holes punched in specific
columns. The placement of the holes represents machine-readable data.
Also a term referring to a printed circuit board.

card reader-—a device for reading information from punched cards.

cassette recorder— a magnetic tape recording and playback device for enter-
ing or storing programs.

233

appendix

cathode—in a semiconductor diode, the terminal from which electrons flow
to an external circuit; the negative terminal.

character—a single symbol that is represented inside the computer by a
specific code.

checksum—a method of detecting errors in a block of data by adding each
piece of data in the block to a sum and comparing the final result to a
predetermined result for the block of data.

chip-——the shaped and processed semiconductor die mounted on a substrate
to form a transistor or other semiconductor device.

circuit— a conductor or systern of conductors through which an electric cur-
rent may flow.

circuit card—a printed circuit board containing electronic components.

clear—to return a memory to a non-programmed state, usually represented
as 0 or OFF (empty).

clock—a simple circuit that generates the synchronization signals for the
microprocessor. The speed or frequency of this clock directly affects the
speed at which the computer can perform, regardless of the speed of which
the individual chips are capable.

COBOL—COmmon Business-Oriented Language. A language used
primarily for data processing. Allows programming statements that are very
similar to English sentences.

compiler—software that will convert a program written in a high-level
language to binary code, on a many-for-one basis.

complement—a mathematical calculation. In computers it specifically
refers to inverting a binary number. Any 1 is replaced by a 0, and vice versa.

computer interface——a device designed for data communication between a
central computer and another unit such as a programmable controller pro-
Cessor.

concatenate— to put two things, each complete by itself, together to make a
larger complete thing. In computers this refers to strings of characters or
programs.

234

appendix

conductor—a substance, body, or other medium that is suitable to carry an
electric current.

constant—a value that doesn’t change.

CPU—central processing unit. The circuitry that actually performs the
functions of the instruction set.

CRT--cathode ray tube. In computing this is just the screen the data ap-
pears on. A TV has a CRT.

cue--refers to positioning the tape on a cassette unit so that it is set up to a
read/write section of tape.

cursor—a visual movable pointer used on a CRT by the programmer to in-
dicate where an instruction is to be added to the program. The cursor is also

used during editing functions.

cycle—a specific period of time, marked in the computer by the clock.

D

D/A converter—digital to analog converter. Common in interfacing com-
puters to the outside world.

daisy wheel— a printer type which has a splined character wheel.

data—general term for numbers, letters, symbols, and analog quantities
that serve as information for computer processing.

data base—refers to a series of programs each having a different function,
but all using the same data. The data is stored in one location or file and each
program uses it in a fashion that still allows the other program to use it.

data entry—the practice of entering data into the computer or onto a
storage device. Knowledge of operating or programming a computer is not
necessary for a data entry operator.

debug—to remove bugs from a program.

decrement—to decrease the value of a number. In computers the number is
in memory or a register, and the amount it is decremented is usually one.

235

appendix

dedicated—in computer terminology, a system set up to perform a single
task.

default—that which is assumed if no specific information is given.

degauss—to demagnetize. Must be done periodically to tape and disk heads
for reliable data transfer.

diagnostic program—a test program to help isolate hardware malfunctions
in the programmable controller and application equipment.

digital—the representation of data in binary code. In microcomputers, a
high electrical signal is a 1 and a low signal is a 0.

digital circuit— an electronic network designed to respond at input voltages
at one level, and similarly, to produce output voltages at one level.

diode— a device with an anode and a cathode which permits current flow in
one direction and inhibits current flow in the other direction.

direct current— dc. Electric current which flows in only one direction; the
term designates a practically non-pulsating current.

disassembly— remaking an assembly source program from a machine-code
program.

disk—an oxide-coated, circular, flat object, in a variety of sizes and con-
tainers, on which computer data can be stored.

disk controller— an interface between the computer and the disk drive.

disk drive—a piece of hardware that rotates the disk and performs data
transfer to and from the disk.

disk operating system—DOS. The system software that manipulates the
data to be sent to the disk controller,

dividend— the number that is divided by the divisor. In A/B, A is the divi-
dend.

divisor—the number that “goes into” the dividend in a divide operation. In
A/B, B is the divisor.

DMA —direct memory access. A process where the CPU is disabled or

236

appendix

bypassed temporarily and memory is read or written to directly.

documentation— a collection of written instructions necessary to use a piece
of hardware, software, or a system.

dot-matrix printer— instead of each letter having a separate type head (like
a typewriter), a single print head makes the characters by printing groups of
dots. The print is not as easy to read, but such printers are less expensive to
manufacture.

downtime— the time when a system is not available for production due to
required maintenance.

driver— a small piece of system software used to control an external device
such as a keyboard or printer.

dump—to write data from memory to an external storage device.

duplex—refers to two-way communications taking place independently,
but sirnultaneously.

dynamic memory—circuits that require a periodic (every few milliseconds)
recharge so that the stored data is not lost.

E
EAROM-—an acronym for Electrical Alterable Read Only Memory. The
chip can be read at normal speed, but must be written to with a slower pro-
cess. Once written to, it is used like a ROM, but can be completely erased if

necessary.

editor—a program that allows text to be entered into memory. Interactive
languages usually have their own editors.

EOF-—End Of File.

EOL—End Of Line (of text).

EPROM—Erasable Programmable Read Only Memory. A read only
memory in which stored data can be erased by ultraviolet light or other

means and reprogrammed bit-by-bit with appropriate voltage pulses.

Exclusive OR—a bit-by-bit logical operation which produces a one bit in the

237

appendix

result only if one or the other (but not both) operand bits is a one.

execution—the performance of a specific operation such as would be ac-
complished through processing one instruction, a series of instructions, or a
complete program.

execution cycle—a cycle during which a single instruction of one specific
operation is performed.

execution time—the total time required for the execution to actually occur.

expansion interface—a device attached to the computer that allows a
greater amount of memory or attachment of other peripherals.

exponent—the power to which a floating-point number is raised.

F

fetch cycle—a cycle during which the next instruction to be performed is
read from memory.

field-effect transistor—FET. A transistor in which the resistance of the cur-
rent path from the source to drain is modulated by applying a transverse
electric field between grid or gate electrodes; the electric field varies the
thickness of depletion layers between the gates, thereby reducing the con-
ductance.

file—a set of data, specifically arranged, that is treated as a single entity by
the software or storage device.

firmware—software that is made semi-permanent by putting it into some
type of ROM.

flag—a single bit that is high (set) or low (reset), used to indicate whether or
not certain conditions exist or have occurred.

flip-flop—a bi-stable device that assumes either of two possible states such
that the transition between the states must be accomplished by electronic
switching.

floating-point number—a standard way of representing any size number in
computers. Floating-point numbers contain a fractional portion (mantissa)
and power of two (exponent) in a form similar to scientific notation.

238

appendix

flowcharting—a method of graphically displaying program steps, used to
develop and define an algorithm before writing the actual code.

FORTRAN--FORmula TRANslator. One of the first high-level languages,
written specifically to allow easy entry of mathematical problems.

full duplex—a mode of data transmission that is the equivalent of two

paths—one in each direction simultaneously.

G

game theory-—see von Neumann.

garbage— computer term for useless data.

gate—a circuit that performs a single Boolean function. A circuit having an
output and a multiplicity of inputs, so designed that the output is energized

only when a certain combination of pulses is present at the inputs.

GIGO-~-Garbage In, Garbage Out. One of the rules of computing. If the
data going into the computer is bad, the data coming out will be bad also.

graphics— information displayed pictorially as opposed to alphanumerically.
ground—a conducting path, intentional or accidental, between an electric

circuit or equipment and the earth, or some conducting body serving in
place of the earth.

H
H— a suffix for hexadecimal, e.g., 4FFFH.

half duplex—data can flow in both directions, but not simultaneously. See
duplex.

handshaking—a term used in data transfer. Indicates that beside the data
lines there are also signal lines so both devices know precisely when to send
or receive data. Handshaking requires clocking pulses on both ends of the
communications line. Contrast with buffer.

hard copy—a printout; any form of printed document such as a ladder
diagram, program listing, paper tape, or punched cards.

239

appendix

hardware—refers to any physical piece of equipment in a computer system.
hei—hexadecimal.

heradecimal—representation of numbers in base sixteen by use of the hexa-
deimal digits 0, 1, 2, 3,4,5,6,7,8,9, A, B,C, D, E, and F.

high—a signal line logic level. The computer senses this level and treats it as
a binary 1.

high-level language—a programming language which is CPU-independent
and closely resembles English.

high order—see most significant bit.

HIT—acronym for Hash Index Table. A section of the directory on a
TES-80 disk.

human engineering—usually refers to designing hardware and software
with ease of use in mind.

IC—integrated circuit.

immediate—addressing mode in which the address of the information that
an operation is supposed to act upon immediately follows the operation
code.

increment—to increase, usually by one. See decrement.

indexed—addressing mode where the information is addressed by a
specified value, or by the value in a specified register.

indirect—addressing mode in which the address given points to another ad-
dress, and the second address is where the information actually is.

input devices—devices such as limit switches, pressure switches, push but-
toms, etc., that supply data to a programmable controller. These discrete in-
puts are two types: those with common return, and those with individual re-
turns (referred to as isolated inputs). Other inputs include analog devices
and digital encoders.

240

appendix

instruction—a command or order that will cause a computer to perform one
particular operation.

integer variable—a BASIC variable type. It can hold values of — 32,768
through + 32,767 in two-byte two’s complement notation.

integrated circuit—IC. An interconnected array of active and passive
elements integrated with a single semiconductor substrate or deposited on
the substrate and capable of performing at least one electronic circuit func-
tion. See chip.

intelligent terminal-—a terminal with a CPU and a certain amount of
memory that can organize the data it receives and thus achieve a high level
of handshaking with the host computer.

interactive computing—refers to the appearance of a one-to-one human-
computer relationship.

interface—a piece of hardware, specifically designed to hook two other
devices together. Usually some software is also required.

interpreter—a piece of system software that executes a program written in a
high-level language directly. While useful for interactive computing, this
system is too slow for most serious programming. Contrast with compiler.

interrupt—a signal that tells the CPU that a task must be done immediately.
The registers are pushed to the stack, and a routine for the interrupt is
branched to. When finished, the registers are popped from the stack and the

main program continues.

I/O—acronym for input/output. Refers to the transfer of data.

iteration—one pass through a given set of instructions.

J

jack—a socket, usually mounted on a device, which will receive a plug
(generally mounted on a wire).

241

appendix

K

K—abbreviation for kilo. In computer terms 1024, in loose terms 1000.

L

language—a set of symbols and rules for representing and communicating
information (data) among people, or between people and machines.

large scale integration—LSI. Any integrated circuit which has more than
100 equivalent gates manufactured simultaneously on a single slice of
semiconductor material.

least significant bit—the rightmost bit in a binary value, representing 2°.

least significant byte—refers to the lowest position digit of a number. The
rightmost byte of a number or character string.

LIFO—acronym for Last In First Out. Most CPUs maintain a “stack” of
memory. The last data pushed onto the stack is the first popped out.

light emitting diode—LED. A semiconductor diode that displays
alphanumeric characters when supplied with a specified voltage.

light pen—a device that senses light, interfaced to the computer for the pur-
pose of drawing on the CRT screen.

line—in communications, describes cables, telephone lines, etc., over which
datais transmitted to and received from the terminal.

line printer—a high-speed printing device that prints an entire line at one
time.

location—a storage position in memory.
logic—a means of solving complex problems through the repeated use of
simple functions which define basic concepts. Three basic logic functions are

AND, OR, and NOT.

logic diagram—a drawing which represents the logic functions AND, OR,
NOT, etc.

logiclevel—the voltage magnitude associated with signal pulses represent-
ing ones and zeroes (1s and 0s) in binary computation.

242

appendix

logical shift—a type of shift in which an operand is shifted right or left, with
a zero filling the vacated bit position.

loop—a set of instructions that executes itself continuously. If the program-
mer has the presence of mind to provide for a test, the loop is discontinued
when the test is met, otherwise it goes on until the machine is shut down.

loop counter—one way to test a loop. The counter is incremented at each
pass through the loop. When it reaches a certain value, the loop is ter-
minated.

low—a logic signal voltage. The computer senses this as a binary 0.
Isb—see least significant bit.

LSI—acronym for Large Scale Integration. An integrated circuit with a
large number of circuits such as a CPU. See chip.

M

machine code—refers to programming instructions that are stored in binary
and can be executed directly by the CPU without any compilation, inter-
pretation, or assembly.

machine language—the primary instructions that were designed into the
CPU by the manufacturer. These instructions move data between memory
and registers, perform simple adding in registers, and allow branching
based on values in registers.

macro—a routine that can be separately programmed, given a name, and
executed from another program. The macro can perform functions on
variables in the program that called it without disturbing anything else and
then return control to the calling program.

mainframe—refers to the CPU of a computer. This term is usually confined
to larger computers.

mantissa——the fractional portion of a floating-point number.

matrix— a two-dimensional array of circuit elements, such as wires, diodes,
etc., which can transform a digital code from one type to another.

memory— the hardware that stores data for use by the CPU. Each piece of

243

appendix

data (bit) is represented by some type of electrical charge. Memory can be
anything from tiny magnetic doughnuts to bubbles in a fluid. Most micro-
computers have chips that contain many microscopic capacitors, each cap-
able of storing a tiny electrical charge.

metal oxide semiconductor—MOS. A metal insulator semiconductor struc-
ture in which the insulating layer is an oxide of the substrate material; for a
silicon substrate the insulator is silicon oxide.

micro electronics—refers to circuits built from miniaturized components
and includes integrated circuits.

microprocessor—an electronic computer processor section implemented in
relatively few IC chips (typically LSI) which contain arithmetic, logic,
register, control, and memory functions.

microsecond—us. One millionth of a second: 1 x 10— ¢ or 0.000001 second.
millisecond—ms. One thousandth of a second: 10 =3 or 0.001 second.
minuend-—the number from which the subtrahend is subtracted.

mixed number—a number consisting of an integer and fraction as, for ex-
ample, 4.35 or (binary) 1010.1011.

mnemonic—a short, alphanumeric abbreviation used to represent a
machine-language code. An assembler will take a program written in these
mnemonics and convert it to machine code.

modem— MOdulator/DEModulator. An /O device that allows com-
munication over telephone lines.

module— an interchangeable plug-in item containing electronic com-
ponents which may be combined with other interchangeable items to form a
complete unit.

monitor—1) a CRT; 2) a short program that displays the contents of
registers and memory locations and allows them to be changed. Monitors
can also allow another program to execute one instruction at a time, saving
programs and disassembling them.

MOS—see metal oxide semiconductor.

244

appendix

MOSFET—metal oxide semiconductor field effect transistor.

most significant bit—the leftmost bit in a binary value, representing the
highest-order power of two. In two’s complement notation, this bit is the
sign bit.

most significant byte—the highest-order byte. In the multiple-precision
number A13EF122H, AlH is the most significant byte.

msb—see most significant byte.

multiplexing—a method allowing several sets of data to be sent at different
times over the same communication lines, yet all of the data can be used
simultaneously after the final set is received. For example, several LED
displays, each requiring four data lines, can all be written to with only one

group of four data lines. The same concept is used with communication
lines.

multiplicand— the number to be multiplied by the multiplier.

multiplier—the number that is multiplied against the multiplicand. The
number “on the bottom.”

N

NAND-—an acronym for NOT AND. A Boolean logic expression. AND is
performed, then NOT is performed to the result.

nanosecond— one billionth of a second.

nesting— putting one loop inside another. Some computers limit the number
of loops that can be nested.

noise— extraneous signals; any disturbance which causes interference with
the desired signal or operation.

non-volatile memory— a memory that does not lose its information while its
power supply is turned off.

NOT—-a Boolean operator that reverses outputs (1 becomes 0, 0 becomes 1).
This is the one’s complement.

245

appendix

0

object code—all of the machine code that is generated by a compiler or
assembler. Once object code is loaded into memory it is called machine
code.

octal—refers to the base 8 number system, using digits 0-7.
OEM--Original Equipment Manufacturer.

off-line—describes equipment or devices which are not connected to the
communications line,

off-the-shelf— a term referring to software. A generalized program that can

be used by many computer owners. It is mass produced and can be bought
off-the-shelf,

on-line—a term describing a situation where one computer is connected to
another, with full handshake, over a modem line.

operands— the numeric values used in the add, subtract, or other operation.

OR—a Boolean logic function. If at least one of the lines tested is high
(binary 1), the answer is high.

output—the current, voltage, power, driving force, or information which a
circuit or a device delivers. The terminals or other places where a circuit or
device can deliver energy.

output devices-—devices such as solenoids, motor starters, etc., that receive
data from the programmable controller.

overflow-—a condition that exists when the result of an add, subtract, or other
arithmetic operation is too large to be held in the number of bits allotted.

overlay—a method of decreasing the amount of memory a program uses by
allowing sections that are not in use simultaneously to load into the same
area of memory. The new routine destroys the first routine, but it can
always be loaded again if needed. Usually used in system programs.

oxide—an iron compound coating on tapes and disks that allows them to be
magnetized so that they can be read by electrical devices and the informa-
tion converted back to machine code.

246

appendix

P

page—refers to a 256 (2 to the 8th power) word block of memory. How large
a word depends on the computer. Most micros are eight-bit word machines.
Many chips do special indexed and offset addressing on the page where the
program counter is pointing and/or on the first page of memory.

parallel—describes a method of data transfer where each bit of a word has
its own data line, and all are transferred simultaneously. Contrast with
serial.

parameter—a variable or constant that can be defined by the user and
usually has a default value.

parity—a method of checking accuracy. The parity is found by adding all
the bits of a word together. If the answer is even, the parity is 0 or even. If
odd, the parity is 1 or odd. The bit sometimes replaces the most significant
bit and usually sets a flag.

parity bit—an additional bit added to a memory word to make the sum of
the number of 1s in a word always even or odd as required.

parity check—a check that tests whether the number of s in an array of
binary digits is odd or even.

PC board—see printed circuit board.

peripheral devices—a generic term for equipment attached to a computer,
such as keyboards, disk drives, cassette tapes, printers, plotters, speech syn-
thesizers.

permutation—arrangements of things in definite order. Two binary digits
have four permutations: 00, 01, 10, and 11.

PILOT—-a simple language for handling English sentences and strings of
alphanumeric characters. Generally used for CAI.

PL/1—an acronym for Programming Language 1. A programming
language used by very large computers. It incorporates most of the better
features from other programming languages. Its power comes from the fact
that bits can be manipulated from the high-level language.

plotter—a device that can draw graphs and curves and is controlled by the
computer through an interface.

247

appendix

port—a single addressable channel used for communications.

positional notation—representation of a number where each digit position
represents an increasingly higher power of the base.

precision— the number of significant digits that a variable or number format
may contain.

printed circuit board—a piece of plastic board with lines of a conductive
material deposited on it to connect the components. The lines act like wires.
These can be manufactured quickly and are easy to assemble the com-
ponents on.

processor—a unit in the programmable controller which scans all the inputs
and outputs in a predetermined order. The processor monitors the status of
the inputs and outputs in response to the user-programmed instructions in
memory, and it energizes or de-energizes outputs as a result of the logical
comparisons made through these instructions.

product— the result of a multiply.

program—a sequence of instructions to be executed by the processor to con-
trol a machine or process.

PROM—Programmable Read Only Memory. A memory device that is writ-
ten to once and from then on acts like a ROM.

pseudo code-—a mnemonic used by assemblers that is not a command to the
CPU, but a command to the assembler itself.

punched-card equipment— peripheral devices that enable punching or
reading paper punched cards that hold character or binary data.

Q

quotient—the result of a divide operation.

R

RAM-—acronym for Random Access Memory. An addressable LSI device
used to store information in microscopic flip-flops or capacitors. Each may
be set to an ON or OFF state, representing logical 1 or 0. This type of

248

appendix

memory is volatile, that is to say, memory is lost while power is off, unless
battery backup is used.

read—to sense the presence of information in some type of storage, which
includes RAM memory, magnetic tape, punched tape, etc.

real time clock—a clock in the sense that we normally think of one, inter-
faced to the computer.

record—a file is divided into records, each of which is organized in the same
manner.

register—a fast-access memory location in the microprocessor. Used for
holding intermediate results and for computation in machine language.

relative addressing—an address that is dependent upon where the program
counter is presently pointing.

remainder—the amount of dividend remaining after a divide has been com-
pleted.

ROM—an acronym for Read Only Memory. Memory that is addressed by
the bus, but can only be read from. If you tell the CPU to write to it, the
machine will try, but the data is not remembered.

rounding—the process of truncating bits to the right of a bit position and
adding zero or one to the next higher bit position based on the value to the
right. Rounding the binary fraction 1011.1011 to two fractional bits, for ex-
ample, results in 1011.11.

RPG-—an acronym for Report Program Generator. A language for business
that primarily reads data from cards and prints reports containing that data.

RS-232—an interface that converts parallel data to serial data for com-
munications purposes. The output is universally standard.

S

scaling—multiplying a number by a fixed amount so that a fraction can be
processed as an integer value.

scientific notation-—a standard form for representing any size number by a
mantissa and power of ten.

249

appendix

semiconductor—a compound that can be made to vary its resistance to elec-
tricity by mixing it differently. Layers of this material can be used to make
circuits that do the same things tubes do, but using much less electricity.
Transistors and integrated circuits are made from semiconductive material
and are called semiconductors.

serial—a way of sending data, one bit at a time, between two devices. The
bits are rejoined into bytes by the receiving device. Contrast with parallel.

sign bit—sometimes the most significant bit is used to indicate the sign of the
number it represents. 1 is negative () and 0 is positive (+).

signed numbers—numbers that may be either positive or negative.

significant bits—the number of bits in a binary value after leading zeros
have been removed.

significant digit—a digit that contributes to the precision of a number. The
number of significant digits is counted beginning with the digit contributing
the most value, called the most significant digit, and ending with one con-
tributing the least value, called the least significant digit.

simulator—a computer that is programmed to mimic the action and func-
tions of another piece of machinery, usually for training purposes. A com-
puter is usually employed because it is cheaper to have the computer
simulate these actions than to use the real thing. Airplane and power plant
trainers are excellent examples.

software—refers to the programs that can be run on a computer.

solid state devices (semiconductors)—electronic components that control
electron flow through solid materials such as crystals; e.g., transistors,
diodes, integrated circuits.

source program—the program written in a language or mnemonics that is
converted to machine code. The source program as well as the object code
generated from it can be saved in mass storage devices.

SPOOL—acronym for Simultaneous Peripheral Output, On-Line. Used to
overlap processing, typically, with printing.

stack—an area of memory used by the CPU and the programmer particular-
ly for storage of register values during interrupt routines. See LIFO.

250

appendix

stepper motor-—a special motor in a disk drive that moves the read/write
head a’specific distance each time power is applied. That distance defines
the tracks on a disk.

storage—see memory.

subroutine—a routine within a program that ends with an instruction to
return program flow to where it was before the routine began. This routine
is used many times from many different places in the program, and the
subroutine allows you to write the code for that routine only once. Similar to
a macro.

subtrahend—the number that is subtracted from the minuend.

syntax—the term is used exactly as it is used in English composition. Every
language has its own syntax.

system—a collection of units combined to work as a larger integrated unit
having the capabilities of all the separate units.

system software—software that the computer must have loaded and run-
ning to work properly.

T

table—an ordered collection of variables and/or values, indexed in such a
way that finding a particular one can be done quickly.

tape reader—a unit which is capable of sensing data from punched tape.

TeletypeTM—a peripheral electromechanical device for entering or output-
ting a program or data in either a punched paper tape or printed format.

text editor—see word processor.

time sharing—refers to systems which allow several people to use the com-
puter at the same time.

track—-a concentric area on a disk where data is stored in microscopic mag-
netized areas.

transistor— an active component of an electronic circuit consisting of a small

251

appendix

block of semiconducting material to which at least three electrical contacts
are made, usually two closely spaced rectifying contacts and one ohmic
(non-rectifying) contact; it may be used as an amplifier, detector, or switch.
transistor-transistor logic—TTL. A logic circuit containing two transistors,
for driving large output capacitances at high speed. A family of integrated

circuit logic. (Usually 5 volts is high or 1, and 0 volts is low or 0; 5V =1,
0V =0).

truncation—the process of dropping bits to the right of a bit position. Trun-
cating the binary fraction 1011.1011 to a number with fraction of two bits,

for example, results in 1011.10.

truth table—a table defining the results for several different variables and
containing all possible states of the variables.

TTL—see transistor-transistor logic.
TTY—an abbreviation for Teletype.

two’s complement—a standard way of representing positive and negative
numbers in microcomputers.

U
unsigned numbers—numbers that may be only positive; absolute numbers.

utility—a program designed to aid the programmer in developing other soft-
ware.

UV erasable PROM—an ultraviolet erasable PROM is a programmable

read-only memory which can be cleared (set to 0) by exposure to intense
ultraviolet light. After being cleared, it may be reprogrammed.

A%

variable—a labeled entity that can take on any value.

volatile memory—a memory that loses its information if the power is re-
moved from it.

252

appendix

von Neumann, John (1903-1957) —mathemetician. He put the concept of
games, winning strategy, and different types of games into mathematical
formulae. He also advanced the concept of storing the program in memory
as opposed to having it on tape.

W

weighted value—the numerical value assigned to any single bit as a function
of its position in the code word.

word—a grouping or a number of bits in a sequence that is treated as a unit
and is stored in one memory location. If the CPU works with 8 bits, then the
word length is 8 bits. Common word sizes are 4, 8, 12, 16, and 32. Some are
as large as 128 bits.

word processor—a computer system dedicated to editing text and printing it
in various controllable formats. See editor.

write—to store in memory or on a mass storage device.

X
XOR—a Boolean function. Acronym for eXclusive OR. Similar to OR but
answer is high (1) if and only if one line is high.

Z

zero flag—a bit in the microprocessor used to record the zero/non-zero
status of the result of a machine-language instruction.

zero page——refers to the first page of memory.

253

INDEX

255

Addition, 183-184
binary, 184-185
decimal, 184
hexadecimal, 186
octal, 185
Address(es),
DCB driver, 195, 201
POKE, 200
ROM driver, 195
Address lines, 168, 169, 172
Adventure game, description of, 21-31
program listing, 32-34
Alphanumeric characters, 51
Annual interest rate, effective, tracking, 12-15
program listing, 16~18
Anti-log(s), 180, 181
Apparat’s NEWDOS/80, Version 1.0, 117
Arctangent, 37
Array(s), 14, 30, 53, 73, 82, 84, 127
DIMensioning of, 123
numeric, 21
string, 51, 82, 124
variable numeric, 31
Array characters, 53
Arrow key(s), 51, 52, 53, 71, 84, 206, 223
ASCII codefs), 71, 74
ASCII number, 73, 74
Assembler, 183
Assembler program, 200
Assembly language, 100, 195, 197
Assembly-language code, 174
ATN, 37
Automobile gas mileage and maintenance, 117-128
program listing, 129-135
BASIC, 51, 79, 80, 81, 82, 100, 101, 102, 174, 198, 197,
199, 200
Level I1, 61, 148
BASIC code, 174
BASIC editor, 51
BASIC expressions, 21
BASIC games, 53
BASIC interpreter, 94
BASIC program(s), 71, 79, 81, 101, 103, 173, 174, 175, 197,
198, 224
BASIC source code, 100
Bearings, calculating, description of, 35-38
program listing, 39
Bit(s),
output enable, 98
programmable, 93
BREAK key, 103, 122, 124, 138, 199, 223
Buffers, 167, 196
data, 82
Bytes, 72, 74, 79, 80, 81, 85, 103, 123, 124, 199, 200, 205,
208
high-order, 199, 200
least sigmificant, 79
maost significant, 79

INDEX

Cartesian (x,y) coordinates, 60
Cartesian vector (x,y), 61
Cassette recorder, 21
Celestial objects, locating, 136-139
program listing, 142-148
Chained-command processor, 195
assernbly-language listing, 202
BASIC listing, 202-204
TRSDOS, 195-201
Chip(s), 167, 170
Intel 8255 programmable interface, 168
1/0, 173
RAM, 81
7415138, 97
7415145, 173
CHR$, 71

CLEAR key, 71, 223
CLEAR statement, 124
CLOAD, 29
CLOAD?, 29
Code(s),
ASCIIL, 71
assemnbly-language, 174
BASIC, 174
BASIC source, 100
CHRS, 157
machine-language, 200
object, 224
source, 224
Color computer, 43
Compiler, 183
Cosine, 36
Credit plans, 3
CSAVE, 29
Daily compounding of interest, 12
Data, 85
EPROM, 104
input of, 106, 124, 125
output of, 108
DATA, 21, 4
Data buffers, 82
Data bus, 98, 167
Data files, 123, 124, 125, 127
Data lines, 167, 168, 169
DATA list, 12
DATA statements, 29, 30
DCB driver address, 195, 201
DEBUG, 80, 103
DEFINT, 122
DEFSTR, 122
Degrees/radians conversion factor, 37
Device control block (DCB), 126, 195
DIM statements, 149
Disk BASIC, 3, 98, 105, 122
Disk BASIC program, 117
Disk Operating System, 3
Division by zero error, 37

257

DOS, 102, 103, 104, 122
DOS command(s), 3, 195
DOS manual, 79, 102, 103
DOS READY, 205
Dot graphics, 69
Double- precision variable, 180
Edge connector, 99
Editor/Assembler, 224
Editor assembler, disk-based, 205
EDTASM, 102
8080 microprocessor, 95
8255, 95, 98
8255 PP1, 85
8255A Programmable Peripheral Interface Applications, 168
ELSE, 62
END, 21
END statement, 38
EPROM(s), 94, 85, 97, 99, 103, 104, 105
2716, 93, 98, 101, 104
2732, 93, 88, 101, 104
EPROM data, 104
EPROM programmer, 93-95, §7-99, 103-106
hardware, 99-100
program listings, 107-114
software, 100103
Error checking, methods of, 21
Error message, 125
Expansion bus, TRS-80, 98
Expansion interface,
LNW, 9
Radio Shack, 99
Expansion port, 99
Exponentiation, 181
Extended BASIC, 4
File(9),
data, 123, 124, 125, 127
random access, 127
sequential, 127
system, 205
Filenames, 123
FIX, 181
Flashing displays, 30
Flashing pixel, 71
Flashing screen displays, 30
Form 1040, 154
FOR-NEXT, 21
FOR-NEXT loop, 15, 127, 149, 180
48K RAM machine, 197
48K system, 208
Game(s),
adventure, 21
BASIC, 53
machine-language, 79
maze, 21, 51
GOSUB, 61
GOTO, 21, 80, 138, 200
Graphics, 22, 30, 71
description of program to generate, 59-69
LSET, 82, 84
POKE, 81
program listing, 70
RSET, 82
string, 71
Graphics, superfast BASIC, 79-85

index

program listings, 86-89
Graphics block(s), 84, 205, 208
Graphics character(s), 127

ASCII representation of, 72

TRS-80, 137
Graphics commands, 79
Graphics dots, 60
Graphics programs, 71, 82

computer generated, 71-82

program listings, 75-78
Heat sink, 99
IF-THEN, 21
INKEY$, 71, 127, 138, 198
INKEYS$ loop, 43, 44
INKEYS$ subroutine, 124, 125, 128
Input,

joystick, 43

keyboard, 124
INPUT, 12, 21
Input mode, 84, 88
Input parameters, 59, 62
Input routine, 84
INPUT statement(s), 38, 223
Integer(s), 53, 82
Integrated circuits, 169, 173
Intel 8255 programmable interface chip, 168
Interface(s), 173

expansion, 99

1/0, 167

Model 1, 170
Interpreter, BASIC, 94
Inverse trig functions, 35, 36

on the TRS-80, 37
1/0 bus, Model 11, 167
1/0 chip, 173
1/O device, 169

memory mapped, 167

programmable, 95
1/0 interface, 167
1/0 port(s), 105, 167

Model 111, 167-170, 172-175
Joystick, 44
Joystick input, 43
Keyboard debounce routine, 138, 195
Layaway plan(s), 3

program description, 3-8

program listing, 9-11
LED(s), 98, 100, 104
Left/Right game, 43-44

program listings, 45-50
LEFT$, 21, 30, 80, 125
LET, 21
Level 1, 223
Level 1 manual, 99
Level 1, 224
Level 11 BASIC, 61, 149
Level II BASIC manual, 195
Level 11 video driver, 223
Line printer, 126
Logarithms, 180
Loop(s),

FOR-NEXT, 15, 127, 149, 180

INKEYS$, 43, 4

timing, 83

258

Lowercase driver, 197, 201
Lowercase keyboard driver, 195
LPRINT, 4
LSET, 79, 80-81, 83, 85
LSET graphics, 82, 84
LSET strings, 84
Machine-language code, 200
Machine-language games, 79
Machine-language program, 183
Machine-language routines, 224
Maze game(s), 21-31, 51-53
program listings, 32-34, 54-55
Memory, 79, 80, 81, 82, 183, 199
high, 84, 101, 174
16K, 149
video, 72
Memory index, 79
MEMORY SIZE, 224
Memory size, BASIC's, 196
Microprocessor, 8080, 95
Model 1, 167
Model 1 interfaces, 170
Model I 16K Level II Radio Shack computers, 21
Model I with 48K RAM, 80
Model It1, 167
Model 11 1O port, 167-170, 172-175
Money market fund, 15
Money market mutual funds, 12
MSBs, 98
Multiple-command processor, TRSDOS, 195-201
assembly language listing, 202
BASIC listing, 202-204
Naperian log, 180
Nested IF statements, 62
NEWDOS/80, 122, 195, 199
NEWDOS/80 lowercase driver, 123
NEWDOS/80, Version 1.0, 117
NEWDOS/80, Version 2, 117
NEWDOS +, 80
Number systems, arithmetic operations of, 183-191
Numerie arrays, 21
Numeric codes, 51
Numeric data statements, 51
Numeric variables, 21
Object code, 224
Object files, 102
Object program, 183
Okidata Micraline-80 printer, 136
ON-GOSUB, 21
OR mode, 60
Pac-ManTM game, 51
Parameter(s), 60, 61, 137
input, 59, 62
PC board, 95, 99
PEEK(s), 53, 72, 81, 122, 126
PEEK function, 52
Personal expense account, 149-157
program listing, 158-163
PIA ports, 97
Pixel, flashing, 71
PLAY option, 44
Pointers, 80
POKE, 53, 81, 103, 123, 197, 199, 200
POKE address(es), 200

index

Port(s), 98, 100, 173
expansion, 99
1/0, 104
PIA, 97
PPI, 8255, 95
Precision,
logarithms, using, 180-182
SGN function, using, 179-180
Prime interest rate, 15
PRINT, 21, 25
PRINT@, 71
PRINT@ position, 73
PRINT CHR$, 223
Printed circuit board, 167
Printer,
Okidata Microline-80, 136
parallel, 3
PRINT statement(s), 21, 29, 38, 81, 83
PRINT USING statement, 182
Program(s),
assembler, 200
BASIC, 71, 79, 81, 101, 173, 174, 175, 198, 224
Disk BASIC, 117
graphics, 71, 82
machine-language, 183
object, 183
source, 100
‘TRS-80, 71
Program variables, 72
PROM, 93, %4
Quick Printer I1, Radio Shack’s, 157
Radio Shack, 195
Radio Shack expansion interface, 99
Radio Shack’s manuals, 195
Radio Shack’s Quick Printer 11, 157
Radio Shack TRS-80, see TRS-80
RAM, 93, 103
video, 81
RAM chips, 81
Random access files, 127
READ, 21
READY message, 197, 223
REM(s), 21, 123
REMark(s), 122, 197
RESET, 71
RESET statement, 44
Resistors, pull-up, 170
RESTORE, 12
RETURN, 21, 38, 168
Ribbon cable, 99, 105
RIGHTS$, 80
ROM, 93, 94, 183
ROM driver address, 195
RSET, 79, 80-81, 83, 85
RSET graphics, 82
RUN, 21
Scripsit, 79
Serolling, 81, 84
automatic, 81, 83, 223
horizontal, 83
vertical, 83
Scrolling, how to control, 223-224
program listings, 225--226
Sequential files, 127

259

index

SET, 44, 71 Variable numeric arrays, 31

7415138 chip, 97 VARPTR, 79

7415145 chip, 173 Video display, TRS-80, 81

SGN function, 179 Video memory, 72

SHIFT @, 62, 223 Video screen, 82, 85

SHIFT key, 84 Voltmeter, 99

Sine, 36 Wire-wrap pins, 95

16K machine, 224 X-coordinates, 35, 37, 38

Source code, 224 XOR {exclusive OR) mode, 60, 65, 68
BASIC, 100 Y-coordinates, 35, 37, 38

Source programs, 100

String(s), 51, 71, 73, 74, 80, 82, 84, 85, 122, 197, 199 INDEX COMPILED BY NAN MCCARTHY
address of, 81
graphics, 82
LSET, 84
null, 82, 83

String array(s), 51, 82, 124
String functions, 53, 80
String graphics, 71
String manipulation, 79
String space, 53, 79, 82, 123, 124
STRINGS, 80, 125, 127
String variable(s), 21, 31, 53, 122, 125, 126, 151, 200
Subroutine, INKEYS$, 124, 125, 128
Subscript, 124, 125
Subscript variable, 125
Subtraction, 187
binary, 188
decimal, 187-188
hexadecimal, 189
octal, 188-189
two's complement, 189-191
System file, 205
SYSTEM tape, 224
Tangent, 37
T-BUG, 226
32K machine, 206
32K RAM machine, 197
TM (type mismatch) error message, 180
TRSDOS, 3, 117, 195, 196, 205
TRSDOS disk, 208
TRSDOS 2.3, 195
TRS-80, 51, 59, 69, 71, 72, 168, 197
addition in, 183
division in, 183
multiplication in, 183
16K Level II, 136
subtraction in, 183
32K Model 1, lowercase, 117
TRS-80 expansion bus, 98
TRS-80 Model I 16K Level 11, 22, 31
TRS-80 Model 111, 3
TRS-80 Model 11l Service Manual, 167
TRS-80 program, 71
Two's complement, 183
used with subtraction, 189-191
USR function, 198
Variable(s), 51, 53, 80, 82, 122, 197
array, 14
double-precision, 180
numeric, 21
program, 72
string, 21, 31, 53, 122, 125, 126, 151, 200
subscript, 125

260

Wayne Green Books

GENERAL
LICENSE
STUDY
GUIDE

by Timothy M. Daniel NSRK

Understanding, not memorization, is the learning approach stressed in the
General License Study Guide. The follow-up to the Novice License Study
Guide, this revised and up-to-date reference book makes it easy to gain the
knowledge needed to earn ham radio’s most popular ticket. Rules and
regulations, electronics fundamentals, operating procedures, and even tips
on taking the exam are included. The key is learning and understand-
ing-—the real fun of ham radio. A veritable wealth of diagrams, tables, and
charts, the General License Study Guide also includes:

® FCC Rules and Regulations

@ Study questions and answers for each chapter
® Comprehensive review

ISBN 0-88006-017-4 96 pages $6-95

WAYNE GREEN BOOKS

Division of Wayne Green Inc FOR TOLL FREE ORDERING:
' Peterborough, NH 03458 1 "800'258'5473
*TRS-80 is a trademark of Radio Shack division of Tandy Corp,

Wayne Green Books

TEXTEDIT

A Complete
Word Processing
System

in Xit Form

by Irwin Rappaport

Word processing systems can cost hundreds of dollars and, even when you've bought
one, it probably won't do everything you want.

TEXTEDIT is an inexpensive word processor that you can adapt to suit your needs,
from writing form letters to large texts. It is written in modules, so you can load and
use only those portions that you need. Included are modules that perform:

@ right justification

@ ASCIT upper/lowercase conversion
@ one-key phrase entering

©® complete editorial functions

@ and much more!

PEXTEDIT is written in TRS-80* Disk BASIC, and the modules are documented in the
author's clear writing style. Not only does Irwin Rappaport explain how to use
TEXTEDIT; he also explains programming techniques implemented in the system.

FEXTEDIT is an inexpensive word processor that helps you learn about BASIC pro-
gramming. It is written for TRS-80 Models I and III with TRS8DOS 2.2/2.3 and 32K.

ISBN 0-88006-050-6 90 pages $9.97
WAYNE GREEN BOOKS
Division of Wayne Green Inc. FOR TOLL FREE ORDERING:
] Peterborough, NH 03458 1-800-258-5473
*TRS-80 and TRSDOS are trademarks of Radlo Shack division of Tandy Corp.

The real value of your com-
puter lies in your ability to use it.
The capabilities of the TRS-80"
are incredible if you have the in-
formation which will help you
get the most from it. Little of
this information is available in
your instruction books.

The Encyclopedia for the TRS-80 will teach you
how to get the most from your computer. In addi-
tion to a wealth of programs which are ready for
you to use, reviews of accessories and commer-
cially available programs, you will also learn how
to write your own programs or even modify com-
mercial programs for your own specific use.

The Encyclopedia is packed with practical in-
formation, written and edited for the average
TRS-80 owner, not the computer scientist. You
will find it interesting and valuable.

Wayne Green
Publisher

